首页> 外文OA文献 >Eigentransformation-based face super-resolution in the wavelet domain
【2h】

Eigentransformation-based face super-resolution in the wavelet domain

机译:小波域中基于特征变换的人脸超分辨率

摘要

In this paper, we propose a wavelet-based eigentransformation method for human face hallucination. Our algorithm uses the wavelet transform to decompose interpolated low-resolution (LR) images in the wavelet domain to obtain high-frequency information in three different directions, and employs the eigentransformation method to reconstruct the corresponding finer high-frequency content of the high-resolution (HR) images. The low-frequency content of the HR images in the wavelet domain is estimated based on the interpolated images directly. The resulting high-quality HR faces can be synthesized by using the inverse wavelet transform, with all the estimated coefficients. By combining interpolation and eigentransformation, the reconstructed images are less dependent on the training set selected, and can better preserve the low-frequency content. Thus, the reconstructed images look more like the ground-true HR images, as compared to the original eigentransformation method. Experimental results show that our proposed algorithm outperforms the original eigentransformation and other existing methods for face hallucination in terms of both visual quality and objective measurements.
机译:本文提出了一种基于小波的人脸幻觉特征变换方法。我们的算法使用小波变换对小波域中的内插低分辨率(LR)图像进行分解以获得三个不同方向上的高频信息,并采用本征变换方法来重构相应的更精细的高分辨率高频内容(HR)图片。直接基于插值图像估计小波域中HR图像的低频内容。可以使用逆小波变换对所有估计系数进行合成,从而生成高质量的HR人脸。通过将插值和本征变换相结合,重建的图像将更少地依赖于所选的训练集,并且可以更好地保留低频内容。因此,与原始特征变换方法相比,重构图像看起来更像是真实的HR图像。实验结果表明,本文提出的算法在视觉质量和客观测量方面都优于原始的本征变换和其他现有的幻觉方法。

著录项

  • 作者

    Hui Z; Lam KM;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号