首页> 外文OA文献 >Tone-dependent error diffusion based on an updated blue-noise model
【2h】

Tone-dependent error diffusion based on an updated blue-noise model

机译:基于更新的蓝噪声模型的与音有关的误差扩散

摘要

The conventional blue-noise model that specifies the desired noise characteristics of an ideal halftone has been updated recently, and simulation results showed that the updated model can serve as a better guideline for developing halftone algorithms. At the moment, only a feature-preserving multiscale error diffusion-based algorithm was developed based on the updated noise model. As the algorithm does not support real-time applications, a tone-dependent error diffusion (TDED) algorithm is developed based on the updated noise model. To support the proposed TDED algorithm, we optimize a diffusion filter and a quantizer threshold for each possible input gray level based on the updated noise model, such that the algorithm can adapt its diffusion filter and quantizer according to the input intensity value of a pixel to produce a halftone. Simulation results showed that the proposed TDED algorithm can successfully produce halftones bearing the desired noise characteristics as specified by the updated noise model. As a consequence, it provides better performance than conventional error diffusion-based algorithms in terms of various measures including radially averaged power spectrum density and anisotropy. When processing real images, it can eliminate directional artifacts, regular structure patterns, and unintended sharpening effects in its halftoning outputs.
机译:指定理想半色调所需噪声特性的常规蓝噪声模型最近已更新,仿真结果表明,更新后的模型可以作为开发半色调算法的更好指南。目前,基于更新后的噪声模型,仅开发了一种基于特征保留,多尺度误差扩散的算法。由于该算法不支持实时应用,因此基于更新后的噪声模型开发了音调相关的误差扩散(TDED)算法。为了支持提出的TDED算法,我们基于更新的噪声模型为每个可能的输入灰度级优化了扩散滤波器和量化器阈值,以使该算法可以根据像素的输入强度值来调整其扩散滤波器和量化器,以适应产生半色调。仿真结果表明,所提出的TDED算法可以成功产生带有期望噪声特性的半色调,该噪声是由更新的噪声模型指定的。结果,在包括径向平均功率谱密度和各向异性在内的各种测量方面,它提供了比传统的基于误差扩散的算法更好的性能。处理真实图像时,它可以消除半色调输出中的方向性伪影,规则的结构图案以及意外的锐化效果。

著录项

  • 作者

    Fung YH; Chan YH;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号