首页>
外文OA文献
>Modeling of tension stiffening behavior in FRP-strengthened RC members based on rigid body spring networks
【2h】
Modeling of tension stiffening behavior in FRP-strengthened RC members based on rigid body spring networks
展开▼
机译:基于刚体弹簧网络的FRP加固RC构件的拉伸刚度行为建模
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
Allowing for the tension stiffening effects resulting from the bond between steel reinforcement and surrounding concrete leads to effective deformation analysis of reinforced concrete (RC) members when using a nonlinear finite element analysis modeled on the smeared crack concept. Nowadays, externally bonded fiber reinforced polymer (FRP) composites are widely used for strengthening existing RC structures. However, it remains unclear to what extent the tension stiffening of postcracking concrete is quantitatively influenced by the addition of FRP composites, as a result of the bond between the FRP and the concrete substrate. This article presents a discrete model, which is based on rigid body spring networks (RBSN), for investigating the tension stiffening behavior of concrete in FRP-strengthened RC tensile members. A two-parameter fracture energy-based model was deployed to represent the bond-slip behavior of the FRP-to-concrete interface. The reliability of the RBSN model was verified through comparisons with previous test results. Further parametric analysis indicates that the tension stiffening of concrete is hardly influenced by the addition of FRP composites before the yield of steel reinforcement has occurred although concrete crack patterns and crack widths may be influenced by the bond-slip behavior of the FRP-to-concrete interface.
展开▼