首页> 外文OA文献 >A generalised K-L expansion method which can deal with small sample size and high-dimensional problems
【2h】

A generalised K-L expansion method which can deal with small sample size and high-dimensional problems

机译:一种通用的K-L展开方法,可以处理小样本量和高维问题

摘要

The K-L expansion method, which is able to extract the discriminatory information contained in class-mean vectors, is generalised, in this paper, to make it suitable for solving small sample size problems. We further investigate, theoretically, how to reduce the method's computational complexity in high-dimensional cases. As a result, a simple and efficient GKLE algorithm is developed. We test our method on the ORL face image database and the NUST603 handwritten Chinese character database, and our experimental results demonstrate that GKLE outperforms the existing techniques of PCA, PCA plus LDA, and Direct LDA.
机译:本文提出了一种K-L展开方法,该方法能够提取类均值向量中包含的判别信息,从而适合解决小样本量问题。从理论上讲,我们将进一步研究如何降低高维情况下该方法的计算复杂度。结果,开发了一种简单有效的GKLE算法。我们在ORL人脸图像数据库和NUST603手写汉字数据库上测试了我们的方法,我们的实验结果表明GKLE优于PCA,PCA加LDA和Direct LDA的现有技术。

著录项

  • 作者

    Yang J; Zhang D; Yang JY;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号