首页> 外文OA文献 >OFFSS: optimal fuzzy-valued feature subset selection
【2h】

OFFSS: optimal fuzzy-valued feature subset selection

机译:OFFSS:最佳模糊值特征子集选择

摘要

Feature subset selection is a well-known pattern recognition problem, which aims to reduce the number of features used in classification or recognition. This reduction is expected to improve the performance of classification algorithms in terms of speed, accuracy and simplicity. Most existing feature selection investigations focus on the case that the feature values are real or nominal, very little research is found to address the fuzzy-valued feature subset selection and its computational complexity. This paper focuses on a problem called optimal fuzzy-valued feature subset selection (OFFSS), in which the quality-measure of a subset of features is defined by both the overall overlapping degree between two classes of examples and the size of feature subset. The main contributions of this paper are that: 1) the concept of fuzzy extension matrix is introduced; 2) the computational complexity of OFFSS is proved to be NP-hard; 3) a simple but powerful heuristic algorithm for OFFSS is given; and 4) the feasibility and simplicity of the proposed algorithm are demonstrated by applications of OFFSS to fuzzy decision tree induction and by comparisons with three different feature selection techniques developed recently.
机译:特征子集选择是一个众所周知的模式识别问题,旨在减少分类或识别中使用的特征数量。预期这种减少将提高分类算法在速度,准确性和简单性方面的性能。大多数现有的特征选择研究都集中在特征值是真实的或名义上的情况下,很少有研究解决模糊值特征子集选择及其计算复杂性。本文着重于一个称为最佳模糊值特征子集选择(OFFSS)的问题,其中,特征子集的质量度量由两类示例之间的总体重叠程度以及特征子集的大小来定义。本文的主要贡献在于:1)介绍了模糊扩展矩阵的概念; 2)OFFSS的计算复杂度被证明是NP难的; 3)给出了一种简单但功能强大的启发式OFFSS算法; 4)通过将OFFSS应用于模糊决策树归纳,并与最近开发的三种不同的特征选择技术进行比较,证明了该算法的可行性和简单性。

著录项

  • 作者

    Tsang ECC; Yeung DS; Wang XZ;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号