首页> 外文OA文献 >Optimizing update threshold for distance-based location tracking strategies in moving object environments
【2h】

Optimizing update threshold for distance-based location tracking strategies in moving object environments

机译:针对移动物体环境中基于距离的位置跟踪策略优化更新阈值

摘要

In distance-based location update schemes with a predefined distance threshold d, an object reports its location to the location server, whenever it is located more than a distance of d away from the location expected of by the server. Adopting a small threshold can keep locations maintained in the location server close to exact object locations, but that incurs high location update costs. In this paper, we address the important issue of finding an optimal distance threshold. Our approach exploits a costfunction that takes into account location update and query processing costs, the two key performance costs, based on which an optimal threshold that minimizes the overall cost is derived. In dynamic environments, costs may vary over time, so a threshold good at one moment could become bad at another. To determine an optimal threshold adaptively, we propose two optimization algorithms, namely, conjectural algorithm and progressive algorithm. Conjectural optimization algorithm " guesses" the current system conditions, based on which it directly determines the most probable optimal value. Progressive optimization algorithm starts with a certain threshold value and adjusts it gradually towards the optimal point. To evaluate our proposed algorithms, various simulation studies are conducted and significant performance gain is observed with our algorithms.
机译:在具有预定距离阈值d的基于距离的位置更新方案中,只要对象的位置与服务器预期的位置相距距离d多,它就会向位置服务器报告其位置。采用较小的阈值可以使位置服务器中维护的位置保持在精确的对象位置附近,但这会导致较高的位置更新成本。在本文中,我们解决了找到最佳距离阈值的重要问题。我们的方法利用了一个成本函数,该成本函数考虑了位置更新和查询处理成本这两个关键性能成本,基于此成本,可以得出使总体成本最小化的最佳阈值。在动态环境中,成本可能会随时间而变化,因此,一个好的阈值可能在另一个时刻变差。为了自适应地确定最佳阈值,我们提出了两种优化算法,即猜想算法和渐进算法。猜想优化算法可以“猜测”当前系统条件,并以此为基础直接确定最可能的最优值。渐进式优化算法从某个阈值开始,然后逐渐将其调整到最佳点。为了评估我们提出的算法,我们进行了各种仿真研究,并通过我们的算法观察到了显着的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号