首页> 外文OA文献 >Sentiment classification of online reviews : using sentence-based language model
【2h】

Sentiment classification of online reviews : using sentence-based language model

机译:在线评论的情感分类:使用基于句子的语言模型

摘要

With the development of social media, the increasing online reviews of products are greatly influencing the electronic market, making sentiment classification the topic of interest for both industry and academia. This paper develops a sentence-based language model to perform sentiment classification at a fine-grained sentence level. The proposed approach applies a machine learning method to determine the sentiment polarity of a sentence at first, then designs statistical algorithm to compute the weight of the sentence in sentiment classification of the whole document and at last aggregates the weighted sentence to predict the sentiment polarity of document. Besides, experiments are carried out on corpuses in different evaluation domains and languages, and the results demonstrate the effectiveness of the sentence-based approach in obtaining a more accurate result of sentiment classification across different reviews. Furthermore, the experimental results also indicate that the position and the sentiment of a sentence have great impact on predicting the sentiment polarity of document, and corpuses with different evaluative objects, languages and sentiments also greatly influence the performance of sentiment classification. It is believed that these conclusions will be a good inspiration for similar researches.
机译:随着社交媒体的发展,越来越多的产品在线评论极大地影响了电子市场,使情感分类成为行业和学术界都感兴趣的话题。本文开发了一种基于句子的语言模型,以在细粒度的句子级别上进行情感分类。提出的方法首先应用机器学习方法确定句子的情感极性,然后设计统计算法计算整个文档的情感分类中句子的权重,最后汇总加权后的句子以预测句子的情感极性。文献。此外,还对不同评价领域和语言的语料库进行了实验,结果证明了基于句子的方法在不同评论中获得更准确的情感分类结果的有效性。实验结果还表明,句子的位置和情感对预测文档的情感极性有很大影响,具有不同评价对象,语言和情感的语料库也极大地影响了情感分类的性能。相信这些结论将为类似研究提供良好的启示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号