首页> 外文OA文献 >A new approach for prediction of sewing performance of fabrics in apparel manufacturing using artificial neural networks
【2h】

A new approach for prediction of sewing performance of fabrics in apparel manufacturing using artificial neural networks

机译:基于人工神经网络的服装制造中织物缝制性能预测的新方法

摘要

This paper investigates the use of extended normalized radial basis function (ENRBF) neural networks to predict the sewing performance of fabrics in apparel manufacturing. In order to evaluate the performance of the ENRBF neural networks that could be emulated as human decision in the prediction of sewing performance of fabrics more effectively, it could be compared with the traditional back-propagation (BP) neural networks in terms of prediction errors. There are 109 data sets cover fabric properties measured by using a computerized measuring system, and the sewing performance of each fabric's specimen assessed by the domain experts. Of these 109 input-output data pairs, 94 were used to train the proposed ENRBF and BP neural networks for the prediction of the unknown sewing performance of a given fabric, and 15 were used to test the proposed ENRBF and BP neural networks, respectively. After 10,000 iterations of training of the ENRBF and BP neural networks, both of them converged to the minimum error level. A comparison was made between actual fabric performances during sewing, the experts' advices, and the results of predicting fabric performances during sewing for both networks. It was found that the ENRBF and BP neural networks indicate similar error levels, but the prediction made by the ENRBF neural network is better than the prediction made by the BP neural network in some areas. Both the systems provided better advice than the experts in some areas, when compared to actual sewing performance.
机译:本文研究使用扩展的归一化径向基函数(ENRBF)神经网络预测服装制造中织物的缝纫性能。为了评估ENRBF神经网络的性能,可以更有效地预测人类缝制织物的缝纫性能,可以将其与传统的反向传播(BP)神经网络在预测误差方面进行比较。共有109个数据集,涵盖使用计算机化测量系统测量的织物性能,并且由领域专家评估每种织物样品的缝纫性能。在这109个输入/输出数据对中,有94个用于训练提议的ENRBF和BP神经网络,以预测给定织物的未知缝制性能,而有15个分别用于测试提议的ENRBF和BP神经网络。在对ENRBF和BP神经网络进行10,000次训练之后,它们都收敛到了最小误差水平。比较了两个网络在缝制过程中的实际织物性能,专家的建议以及在缝制过程中预测织物性能的结果。已经发现ENRBF和BP神经网络指示相似的错误级别,但是在某些区域,ENRBF神经网络的预测优于BP神经网络的预测。与实际缝纫性能相比,这两个系统在某些方面都比专家提供了更好的建议。

著录项

  • 作者

    Hui CL; Ng SF;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号