首页> 外文OA文献 >Fast extraction of wavelet-based features from JPEG images for joint retrieval with JPEG2000 images
【2h】

Fast extraction of wavelet-based features from JPEG images for joint retrieval with JPEG2000 images

机译:从JPEG图像中快速提取基于小波的特征,以便与JPEG2000图像进行联合检索

摘要

In this paper, some fast feature extraction algorithms are addressed for joint retrieval of images compressed in JPEG and JPEG2000 formats. In order to avoid full decoding, three fast algorithms that convert block-based discrete cosine transform (BDCT) into wavelet transform are developed, so that wavelet-based features can be extracted from JPEG images as in JPEG2000 images. The first algorithm exploits the similarity between the BDCT and the wavelet packet transform. For the second and third algorithms, the first algorithm or an existing algorithm known as multiresolution reordering is first applied to obtain bandpass subbands at fine scales and the lowpass subband. Then for the subbands at the coarse scale, a new filter bank structure is developed to reduce the mismatch in low frequency features. Compared with the extraction based on full decoding, there is more than 72% reduction in computational complexity. Retrieval experiments also show that the three proposed algorithms can achieve higher precision and recall than the multiresolution reordering, especially around the typical range of compression ratio.
机译:本文提出了一些快速特征提取算法,用于联合检索以JPEG和JPEG2000格式压缩的图像。为了避免完全解码,开发了将基于块的离散余弦变换(BDCT)转换为小波变换的三种快速算法,以便可以像从JPEG2000图像中一样从JPEG图像中提取基于小波的特征。第一种算法利用了BDCT和小波包变换之间的相似性。对于第二和第三种算法,首先应用第一种算法或称为多分辨率重排序的现有算法,以获得精细比例的带通子带和低通子带。然后,针对粗尺度的子带,开发了一种新的滤波器组结构,以减少低频特征中的失配。与基于完全解码的提取相比,计算复杂度降低了72%以上。检索实验还表明,与多分辨率重新排序相比,三种提出的算法可以实现更高的精度和召回率,尤其是在典型的压缩比范围内。

著录项

  • 作者

    Cheng KO; Law NF; Siu WC;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号