首页> 外文OA文献 >Combining left and right palmprint images for more accurate personal identification
【2h】

Combining left and right palmprint images for more accurate personal identification

机译:合并左右手掌图像以更准确地进行个人识别

摘要

Multibiometrics can provide higher identification accuracy than single biometrics, so it is more suitable for some real-world personal identification applications that need high-standard security. Among various biometrics technologies, palmprint identification has received much attention because of its good performance. Combining the left and right palmprint images to perform multibiometrics is easy to implement and can obtain better results. However, previous studies did not explore this issue in depth. In this paper, we proposed a novel framework to perform multibiometrics by comprehensively combining the left and right palmprint images. This framework integrated three kinds of scores generated from the left and right palmprint images to perform matching score-level fusion. The first two kinds of scores were, respectively, generated from the left and right palmprint images and can be obtained by any palmprint identification method, whereas the third kind of score was obtained using a specialized algorithm proposed in this paper. As the proposed algorithm carefully takes the nature of the left and right palmprint images into account, it can properly exploit the similarity of the left and right palmprints of the same subject. Moreover, the proposed weighted fusion scheme allowed perfect identification performance to be obtained in comparison with previous palmprint identification methods.
机译:多重生物识别技术可以提供比单一生物识别技术更高的识别精度,因此它更适合于一些需要高标准安全性的现实世界个人识别应用。在各种生物识别技术中,掌纹识别由于其良好的性能而备受关注。组合左右掌印图像以执行多重生物测量很容易实现,并且可以获得更好的结果。但是,以前的研究并未深入探讨这个问题。在本文中,我们提出了一种通过全面组合左右手掌图像来执行多重生物计量的新颖框架。该框架集成了从左右手掌图像生成的三种分数,以执行匹配的分数级别融合。前两种得分分别从左右掌纹图像生成,可以通过任何掌纹识别方法获得,而第三种得分是使用本文提出的专用算法获得的。由于所提出的算法仔细考虑了左掌图像和右掌图像的性质,因此可以正确利用同一对象的左掌图像和右掌图像的相似性。此外,与先前的掌纹识别方法相比,所提出的加权融合方案允许获得完美的识别性能。

著录项

  • 作者

    Xu Y; Fei L; Zhang D;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号