首页> 外文OA文献 >Prediction of drape profile of cotton woven fabrics using artificial neural network and multiple regression method
【2h】

Prediction of drape profile of cotton woven fabrics using artificial neural network and multiple regression method

机译:基于人工神经网络和多元回归的棉织物悬垂率预测。

摘要

Fabric drape is one of the most important factors which affect the graceful appearance of the garment. The drape coefficient is the widely used parameter to describe fabric drape but it needs other parameters to explain the fabric behavior. In this study, we have investigated the relationship between the fabric drape parameters such as drape coefficient, drape distance ratio, fold depth index, amplitude and number of nodes and low stress mechanical properties. Drape parameters were tested on a specially developed instrument based on a digital image processing technique and the low stress mechanical properties were tested by the Kawabata evaluation system. Then the drape parameters were predicted by constructing models using multiple regressions method and feed-forward back-propagation neural network technique. Simple equations are derived using regressions method to predict the five shape parameters of drape profile from the low stress mechanical properties. It is observed that bending, shear and aerial density affect the drape parameters most whereas the tensile and compression have little effect on the drape parameters.
机译:织物悬垂性是影响服装优美外观的最重要因素之一。悬垂系数是用来描述织物悬垂性的广泛使用的参数,但是它需要其他参数来解释织物的行为。在这项研究中,我们研究了织物悬垂参数之间的关系,例如悬垂系数,悬垂距离比,折叠深度指数,幅值和节数以及低应力力学性能。在基于数字图像处理技术的专门开发的仪器上测试悬垂参数,并通过Kawabata评估系统测试了低应力机械性能。然后利用多元回归法和前馈反向传播神经网络技术构建模型,预测悬垂参数。使用回归方法导出简单方程,以从低应力力学性能预测悬垂轮廓的五个形状参数。观察到弯曲,剪切和空气密度对悬垂参数影响最大,而拉伸和压缩对悬垂参数影响很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号