首页> 外文OA文献 >A Bayesian approach to condition monitoring with imperfect inspections
【2h】

A Bayesian approach to condition monitoring with imperfect inspections

机译:一种不完善检查的贝叶斯状态监测方法

摘要

Degradation is a common phenomenon for many products. Because of a variety of reasons, the degradation rates of units from the same population are often heterogeneous. In addition, when the degradation process is monitored using dedicated sensors, the measurements are often inaccurate because of various noisy factors. To account for the heterogeneous degradation rate and the non-negligible measurement errors, we model the degradation observations using a random-effects Wiener process with measurement errors. Under the model, direct estimation of current degradation and prediction of future degradation are difficult. We thus develop a filtering algorithm that recursively estimates the joint distribution of the degradation rate and the current degradation levels. Based on the estimates, the distribution of the remaining useful life can be timely predicted. Our method is both computational efficient and storage efficient. Its effectiveness is demonstrated through simulation and real data.
机译:降解是许多产品的普遍现象。由于多种原因,来自同一种群的单位的降解率通常是异质的。另外,当使用专用传感器监控降解过程时,由于各种噪声因素,测量结果通常不准确。为了说明异质降解率和不可忽略的测量误差,我们使用带有测量误差的随机效应维纳过程对降解观测值进行建模。在该模型下,很难直接估计当前的退化和预测未来的退化。因此,我们开发了一种过滤算法,该算法可递归地估算退化率和当前退化水平的联合分布。根据估算,可以及时预测剩余使用寿命的分布。我们的方法既有计算效率,又有存储效率。通过仿真和真实数据证明了其有效性。

著录项

  • 作者

    Ye Z; Chen N; Tsui KL;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号