首页> 外文OA文献 >Distributed recurrent neural networks for cooperative control of manipulators : a game-theoretic perspective
【2h】

Distributed recurrent neural networks for cooperative control of manipulators : a game-theoretic perspective

机译:机器人协同控制的分布式递归神经网络:博弈论的视角

摘要

This paper considers cooperative kinematic control of multiple manipulators using distributed recurrent neural networks and provides a tractable way to extend existing results on individual manipulator control using recurrent neural networks to the scenario with the coordination of multiple manipulators. The problem is formulated as a constrained game, where energy consumptions for each manipulator, saturations of control input, and the topological constraints imposed by the communication graph are considered. An implicit form of the Nash equilibrium for the game is obtained by converting the problem into its dual space. Then, a distributed dynamic controller based on recurrent neural networks is devised to drive the system toward the desired Nash equilibrium to seek the optimal solution of the cooperative control. Global stability and solution optimality of the proposed neural networks are proved in the theory. Simulations demonstrate the effectiveness of the proposed method.
机译:本文考虑了使用分布式递归神经网络的多机械手的协同运动学控制,并提供了一种可扩展的方法,以将使用递归神经网络的单个机械手控制的现有结果扩展到多机械手协调的情况下。该问题被公式化为约束博弈,其中考虑了每个操纵器的能耗,控制输入的饱和以及通信图所施加的拓扑约束。通过将问题转换为其对偶空间,可以得到游戏纳什均衡的隐式形式。然后,设计了一种基于递归神经网络的分布式动态控制器,以将系统驱动到所需的Nash平衡,以寻求协同控制的最佳解决方案。理论证明了所提出神经网络的全局稳定性和最优解。仿真表明了该方法的有效性。

著录项

  • 作者

    Li S; He J; Li Y; Rafique MU;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号