首页> 外文OA文献 >Tetris : optimizing cloud resource usage unbalance with elastic VM
【2h】

Tetris : optimizing cloud resource usage unbalance with elastic VM

机译:俄罗斯方块:通过弹性VM优化云资源使用不平衡

摘要

Recently, the cloud systems face an increasing number of big data applications. It becomes an important issue for the cloud providers to allocate resources so as to accommodate as many of these big data applications as possible. In current cloud service, e.g., Amazon EMR, a job runs on a fixed cluster. This means that a fixed amount of resources (e.g. CPU, memory) is allocated to the life cycle of this job. We observe that the resources are inefficiently used in such services because of resources usage unbalance. Therefore, we propose a runtime elastic VM approach where the cloud system can increase or decrease the number of CPUs at different time periods for the jobs. There is little change to such services as Amazon EMR, yet the cloud system can accommodate many more jobs. In this paper, we first present a measurement study to show the feasibility and the quantitative impact of adjusting VM configurations dynamically. We then model the task and job completion time of big data applications, which are used for elastic VM adjustment decisions. We validate our models through experiments. We present Tetris, an elastic VM strategy based on cloud system that can better optimize resource utilization to support big data applications. We further implement a Tetris prototype and comprehensively evaluate Tetris on a real private cloud platform using Facebook trace and Wikipedia dataset. We observe that with Tetris, the cloud system can accommodate 31.3% more jobs.
机译:最近,云系统面临着越来越多的大数据应用程序。对于云提供商而言,分配资源以容纳尽可能多的这些大数据应用程序成为一个重要的问题。在当前的云服务中,例如Amazon EMR,作业在固定集群上运行。这意味着将固定数量的资源(例如CPU,内存)分配给该作业的生命周期。我们观察到,由于资源使用不平衡,资源无法有效地用于此类服务。因此,我们提出了一种运行时弹性VM方法,其中云系统可以在不同时间段增加或减少作业的CPU数量。诸如Amazon EMR之类的服务几乎没有变化,但是云系统可以容纳更多的工作。在本文中,我们首先进行了一项测量研究,以显示动态调整VM配置的可行性和定量影响。然后,我们对大数据应用程序的任务和完成时间进行建模,这些数据用于弹性VM调整决策。我们通过实验验证我们的模型。我们提出了Tetris,这是一种基于云系统的弹性VM策略,可以更好地优化资源利用率以支持大数据应用程序。我们进一步实现了Tetris原型,并使用Facebook跟踪和Wikipedia数据集在真实的私有云平台上全面评估了Tetris。我们观察到,使用Tetris,云系统可以容纳31.3%的更多工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号