首页> 外文OA文献 >Modified local entropy-based transition region extraction and thresholding
【2h】

Modified local entropy-based transition region extraction and thresholding

机译:改进的基于局部熵的过渡区域提取和阈值确定

摘要

Transition region-based thresholding is a newly developed image binarization technique. Transition region descriptor plays a key role in the process, which greatly affects accuracy of transition region extraction and subsequent thresholding. Local entropy (LE), a classic descriptor, considers only frequency of gray level changes, easily causing those non-transition regions with frequent yet slight gray level changes to be misclassified into transition regions. To eliminate the above limitation, a modified descriptor taking both frequency and degree of gray level changes into account is developed. In addition, in the light of human visual perception, a preprocessing step named image transformation is proposed to simplify original images and further enhance segmentation performance. The proposed algorithm was compared with LE, local fuzzy entropy-based method (LFE) and four other thresholding ones on a variety of images including some NDT images, and the experimental results show its superiority.
机译:基于过渡区域的阈值化是一种新开发的图像二值化技术。过渡区描述符在该过程中起关键作用,这极大地影响了过渡区提取和后续阈值的准确性。局部熵(LE)是经典的描述符,它仅考虑灰度变化的频率,从而容易导致那些频繁但略有灰度变化的非过渡区域误分类为过渡区域。为了消除上述限制,开发了一种同时考虑了频率和灰度变化程度的改进的描述符。另外,根据人类的视觉感知,提出了一种称为图像变换的预处理步骤,以简化原始图像并进一步提高分割性能。将该算法与LE,基于局部模糊熵的算法(LFE)和其他四个阈值算法在包括无损检测图像在内的各种图像上进行了比较,实验结果表明了该算法的优越性。

著录项

  • 作者

    Li Z; Zhang D; Xu Y; Liu C;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号