首页> 外文OA文献 >A decision support tool for apparel coordination through integrating the knowledge-based attribute evaluation expert system and the T-S fuzzy neural network
【2h】

A decision support tool for apparel coordination through integrating the knowledge-based attribute evaluation expert system and the T-S fuzzy neural network

机译:通过集成基于知识的属性评估专家系统和T-S模糊神经网络的服装协调决策支持工具

摘要

In today's competitive fashion retailing business, providing "mix-and-match" or "fashion coordination" recommendations can enhance customer service, brand loyalty and improve sales. In this study, we propose a decision support tool for fashion coordination through the integration of the knowledge-based attribute evaluation expert system and the Takagi-Sugeno fuzzy neural network (TSFNN). A set of attributes of the apparel items for coordination are identified and formulated. The evaluation of these attributes can be accomplished by a knowledge-based expert system which can handle the difficulty of processing linguistic and categorical information effectively. A fuzzy clustering technique and a new hybrid learning algorithm combining the PSO and GA techniques are proposed to reduce the coordination rules and the training time for the TSFNN. The experimental results show that rules reduction can shorten the TSFNN training time while keeping a very satisfactory and low MSE value. The proposed hybrid algorithm outperforms the Back Propagation, the Genetic Algorithm, and the Particle Swarm Optimization. The apparel pairs recommended by the decision support tool are now integrated with a smart dressing system of a fashion retailing company in Hong Kong and practically used.
机译:在当今竞争激烈的时尚零售业务中,提供“混合搭配”或“时尚协调”建议可以增强客户服务,品牌忠诚度并改善销售。在这项研究中,我们提出了一种通过基于知识的属性评估专家系统和Takagi-Sugeno模糊神经网络(TSFNN)集成来进行时尚协调的决策支持工具。识别和制定用于协调的服装项目的一组属性。这些属性的评估可以通过基于知识的专家系统来完成,该专家系统可以有效处理语言和类别信息的困难。提出了一种模糊聚类技术和结合PSO和GA技术的新型混合学习算法,以减少TSFNN的协调规则和训练时间。实验结果表明,规则减少可以缩短TSFNN的训练时间,同时保持非常令人满意的MSE值。所提出的混合算法优于反向传播算法,遗传算法和粒子群算法。现在,决策支持工具推荐的服装对已与香港一家时装零售公司的智能着装系统集成在一起,并已得到实际使用。

著录项

  • 作者

    Wong WK; Zeng XH; Au WMR;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号