首页> 外文OA文献 >Improving learning accuracy of fuzzy decision trees by hybrid neural networks
【2h】

Improving learning accuracy of fuzzy decision trees by hybrid neural networks

机译:混合神经网络提高模糊决策树的学习精度

摘要

Although the induction of fuzzy decision tree (FDT) has been a very popular learning methodology due to its advantage of comprehensibility, it is often criticized to result in poor learning accuracy. Thus, one fundamental problem is how to improve the learning accuracy while the comprehensibility is kept. This paper focuses on this problem and proposes using a hybrid neural network (HNN) to refine the FDT. This HNN, designed according to the generated FDT and trained by an algorithm derived in this paper, results in a FDT with parameters, called weighted FDT. The weighted FDT is equivalent to a set of fuzzy production rules with local weights (LW) and global weights (GW) introduced in our previous work (1998). Moreover, the weighted FDT, in which the reasoning mechanism incorporates the trained LW and GW, significantly improves the FDTs' learning accuracy while keeping the FDT comprehensibility. The improvements are verified on several selected databases. Furthermore, a brief comparison of our method with two benchmark learning algorithms, namely, fuzzy ID3 and traditional backpropagation, is made. The synergy between FDT induction and HNN training offers new insight into the construction of hybrid intelligent systems with higher learning accuracy
机译:尽管归因于模糊决策树(FDT)的可理解性的优势,它已成为一种非常流行的学习方法,但它经常被批评导致学习准确性差。因此,一个基本问题是如何在保持可理解性的同时提高学习准确性。本文针对此问题,并提出使用混合神经网络(HNN)来完善FDT。该HNN根据生成的FDT进行设计并通过本文导出的算法进行训练,从而生成具有参数的FDT,称为加权FDT。加权FDT等效于我们先前工作(1998)中引入的具有局部权重(LW)和全局权重(GW)的一组模糊生产规则。此外,其中推理机制结合了训练有素的LW和GW的加权FDT,在保持FDT可理解性的同时,极大地提高了FDT的学习准确性。改进已在几个选定的数据库上得到验证。此外,对我们的方法与两种基准学习算法(即模糊ID3和传统的反向传播)进行了简要比较。 FDT归纳和HNN培训之间的协同作用为构建具有更高学习精度的混合智能系统提供了新见解

著录项

  • 作者

    Tsang ECC; Wang XZ; Yeung DS;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号