首页> 外文OA文献 >Speaker verification via high-level feature-based phonetic-class pronunciation modeling
【2h】

Speaker verification via high-level feature-based phonetic-class pronunciation modeling

机译:通过基于功能的高级语音类语音建模进行说话人验证

摘要

It has recently been shown that the pronunciation characteristics of speakers can be represented by articulatory featurebased conditional pronunciation models (AFCPMs). However, the pronunciation models are phoneme dependent, which may lead to speaker models with low discriminative power when the amount of enrollment data is limited. This paper proposes mitigating this problem by grouping similar phonemes into phonetic classes and representing background and speaker models as phonetic-class dependent density functions. Phonemes are grouped by 1) vector quantizing the discrete densities in the phoneme-dependent universal background models, 2) using the phone properties specified in the classical phoneme tree, or 3) combining vector quantization and phone properties. Evaluations based on the 2000 NIST SRE show that this phonetic-class approach effectively alleviates the data spareness problem encountered in conventional AFCPM, which results in better performance when fused with acoustic features.
机译:最近已经表明,说话者的发音特性可以通过基于发音特征的条件发音模型(AFCPM)来表示。但是,发音模型取决于音素,当注册数据量受到限制时,这可能导致说话者模型的辨别力较低。本文提出了通过将相似的音素分组为语音类别并将背景和说话者模型表示为依赖于语音类别的密度函数来缓解此问题的方法。通过以下方式对音素进行分组:1)在依赖音素的通用背景模型中矢量量化离散密度,2)使用经典音素树中指定的音素属性,或3)结合矢量量化和音素属性。基于2000 NIST SRE的评估表明,这种语音类方法有效地缓解了传统AFCPM中遇到的数据冗余问题,当与声学功能融合时,可以带来更好的性能。

著录项

  • 作者

    Zhang SX; Mak MW; Meng HM;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号