首页> 外文OA文献 >A multiple classifier approach to detect Chinese character recognition errors
【2h】

A multiple classifier approach to detect Chinese character recognition errors

机译:一种检测汉字识别错误的多分类器方法

摘要

Detection of recognition errors is important in many areas, such as improving recognition performance, saving manual effort for proof-reading and post-editing, and assigning appropriate weights for retrieval in constructing digital libraries. We propose a novel application of multiple classifiers for the detection of recognition errors. A need for multiple classifiers emerges when a single classifier cannot improve recognition-error detection performance compared with the current detection scheme using a simple threshold mechanism. Although the single classifier does not improve recognition error performance, it serves as a baseline for comparison and the related study of useful features for error detection suggests three distinct cases where improvement is needed. For each case, the multiple classifier approach assigns a classifier to detect the presence or absence of errors and additional features are considered for each case. Our results show that the recall rate (70-80%) of recognition errors, the precision rate (80-90%) of recognition error detection and the saving in manual effort (75%) were better than the corresponding performance using a single classifier or a simple threshold detection scheme.
机译:识别错误的检测在许多领域都很重要,例如,提高识别性能,节省校对和后期编辑的人工工作以及在构建数字图书馆时分配适当的权重以进行检索。我们提出了一种用于识别错误检测的多个分类器的新颖应用。当单个分类器与使用简单阈值机制的当前检测方案相比无法提高识别错误检测性能时,就需要多个分类器。尽管单个分类器不能提高识别错误的性能,但它可以作为比较的基准,有关错误检测有用功能的相关研究表明,需要改进的三种不同情况。对于每种情况,多分类器方法分配一个分类器以检测错误的存在或不存在,并且针对每种情况考虑其他功能。我们的结果表明,识别错误的召回率(70-80%),识别错误检测的准确率(80-90%)和人工节省(75%)优于使用单个分类器的相应性能或简单的阈值检测方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号