首页> 外文OA文献 >Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network
【2h】

Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network

机译:利用显着图分析,小波变换和模糊ARTMAP神经网络对纱线表面外观进行智能表征和评估

摘要

The evaluation of yarn surface appearance is an important routine in assessing yarn quality in textile industry. Traditionally, this evaluation is subjectively carried out by manual inspection, which is much skill-oriented, judgmental and inconsistent. To resolve the drawbacks of the manual method, an integrated intelligent characterization and evaluation model is proposed in this paper for the evaluation of yarn surface appearance. In the proposed model, attention-driven fault detection, wavelet texture analysis and statistical measurement are developed and incorporated to fully extract the characteristic features of yarn surface appearance from images and a fuzzy ARTMAP neural network is employed to classify and grade yarn surface qualities based on the extracted features. Experimental results on a database of 576 yarn images show the proposed intelligent evaluation system achieves a satisfactory performance both for the individual yarn category and global yarn database. In addition, a comparative study among the fuzzy ARTMAP, Back-Propagation (BP) neural network, and Support Vector Machine (SVM) shows the superior capacity of the proposed fuzzy ARTMAP in classifying yarn surface qualities of the database.
机译:纱线表面外观的评估是评估纺织行业纱线质量的重要程序。传统上,这种评估是通过人工检查来主观进行的,这是非常注重技能,判断力和前后不一致的。为解决手工方法的弊端,本文提出了一种集成的智能表征与评价模型,用于评价纱线表面外观。在该模型中,开发并引入了注意力驱动的故障检测,小波纹理分析和统计测量,以从图像中充分提取纱线表面外观的特征,并使用模糊ARTMAP神经网络对纱线表面质量进行分类和分级。提取的特征。在576幅纱线图像的数据库上的实验结果表明,所提出的智能评估系统对于单个纱线类别和全局纱线数据库均实现了令人满意的性能。此外,对模糊ARTMAP,反向传播(BP)神经网络和支持向量机(SVM)的比较研究表明,所提出的模糊ARTMAP在数据库纱线表面质量分类中具有出色的功能。

著录项

  • 作者

    Liang Z; Xu B; Chi Z; Feng D;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号