首页>
外文OA文献
>Depth estimation of face images based on the constrained ICA model
【2h】
Depth estimation of face images based on the constrained ICA model
展开▼
机译:基于约束ICA模型的人脸图像深度估计
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
In this paper, we propose a novel and efficient algorithm to reconstruct the 3-D structure of a human face from one or a number of its 2-D images with different poses. In our proposed algorithm, the rotation and translation process from a frontal-view face image to a nonfrontal-view face image is at first formulated as a constrained independent component analysis (cICA) model. Then, the overcomplete ICA problem is converted into a normal ICA problem by incorporating a prior from the CANDIDE 3-D face model. Furthermore, the CANDIDE model is employed to construct a reference signal that is used in both the initialization and the objective function of the cICA model. Moreover, a model-integration method is proposed to improve the depth-estimation accuracy when multiple nonfrontal-view face images are available. An important advantage of the proposed algorithm is that no frontal-view face image is required for the estimation of the corresponding 3-D face structure. Experimental results on a real 3-D face image database demonstrate the feasibility and efficiency of the proposed method.
展开▼