首页> 外文OA文献 >Wavelet energy feature extraction and matching for palmprint recognition
【2h】

Wavelet energy feature extraction and matching for palmprint recognition

机译:小波能量特征提取与匹配掌纹识别

摘要

According to the fact that the basic features of a palmprint, including principal lines, wrinkles and ridges, have different resolutions, in this paper we analyze palmprints using a multi-resolution method and define a novel palmprint feature, which called wavelet energy feature (WEF), based on the wavelet transform. WEF can reflect the wavelet energy distribution of the principal lines, wrinkles and ridges in different directions at different resolutions (scales), thus it can efficiently characterize palmprints. This paper also analyses the discriminabilities of each level WEF and, according to these discriminabilities, chooses a suitable weight for each level to compute the weighted city block distance for recognition. The experimental results show that the order of the discriminabilities of each level WEF, from strong to weak, is the 4th, 3rd, 5th, 2nd and 1st level. It also shows that WEF is robust to some extent in rotation and translation of the images. Accuracies of 99.24% and 99.45% have been obtained in palmprint verification and palmprint identification, respectively. These results demonstrate the power of the proposed approach.
机译:根据掌纹的基本特征(包括主线,皱纹和山脊)具有不同的分辨率这一事实,本文我们使用多分辨率方法分析掌纹,并定义了一种新颖的掌纹特征,称为小波能量特征(WEF) ),基于小波变换。 WEF可以以不同的分辨率(尺度)反映不同方向上的主线,皱纹和山脊的小波能量分布,因此可以有效地表征掌纹。本文还分析了每个级别WEF的可分辨性,并根据这些可分辨性为每个级别选择合适的权重以计算加权的城市街区距离以进行识别。实验结果表明,从强到弱,每个级别的WEF的可辨别性顺序分别为4、3、5、2和1级。它还表明WEF在图像的旋转和平移方面具有一定的鲁棒性。在掌纹验证和掌纹识别中分别获得了99.24%和99.45%的精度。这些结果证明了所提出方法的力量。

著录项

  • 作者

    Wu XQ; Wang KQ; Zhang D;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号