首页> 外文OA文献 >User preference modeling by trust propagation for rating prediction
【2h】

User preference modeling by trust propagation for rating prediction

机译:通过信任传播进行用户偏好建模以进行评级预测

摘要

To alleviate the issue of data sparsity in collaborative filtering (CF), a number of trust-aware recommendation methods have been proposed recently. However, the existing methods that straightforwardly utilize trust relations to model user similarities in ratings or preference features can hardly provide the in-depth understanding of the trust and its relationship to user preference. They also fail to systematically model the mutual influence among users via the truster-user-trustee propagation. In this paper, we propose a novel integrated matrix factorization framework to model user preference, trust relation and the relationship between them in a systematic way. The proposed framework is able to describe how and how much users' preferences change and influence each other with trust propagation over the network. As a result, more effective user preference features can be learned from both rating and trust data. Experimental results on three real-world datasets show that our proposed methods outperform the state-of-theart CF and trust-aware methods.
机译:为了减轻协作过滤(CF)中数据稀疏性的问题,最近提出了许多信任感知的推荐方法。然而,直接利用信任关系来对等级或偏好特征中的用户相似性进行建模的现有方法很难提供对信任及其与用户偏好的关系的深入了解。他们还无法通过信任者-用户-受托者传播来系统地建模用户之间的相互影响。在本文中,我们提出了一种新颖的集成矩阵分解框架,以系统方式对用户偏好,信任关系及其之间的关系进行建模。所提出的框架能够描述通过网络上的信任传播,用户的偏好如何以及有多少相互影响。结果,可以从评级和信任数据两者中学习更有效的用户偏好特征。在三个真实数据集上的实验结果表明,我们提出的方法优于最新的CF和信任感知方法。

著录项

  • 作者

    Lei Y; Chen C; Chen Q; Li W;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号