首页> 外文OA文献 >Colour-appearance modeling using feedforward networks with Bayesian regularization method. Part II : reverse model
【2h】

Colour-appearance modeling using feedforward networks with Bayesian regularization method. Part II : reverse model

机译:使用前馈网络和贝叶斯正则化方法进行颜色外观建模。第二部分:反向模型

摘要

In Part I of this article, the development of a multilayer perceptrons feedforward artificial neural network model to predict colour appearance from colorimetric values was reported. Bayesian regularization was employed for the training of the network. In this part of the article, the reverse model, that is, the perdition of colorimetric values from the colour appearance attributes is reported using the same neural network design methodology developed in Part I. This study should contribute to the building of an artificial neural network¡Vbased colour appearance prediction, both forward and reverse, using the most comprehensive LUTCHI colour appearance data sets for training and testing. Good prediction accuracy and generalization ability were obtained using the neural networks built in the study. Because the neural network approach is of a black-box type, colour appearance prediction using this method should be easier to apply in practice.
机译:在本文的第一部分中,报告了一种多层感知器前馈人工神经网络模型的开发,该模型可以根据比色值预测颜色外观。贝叶斯正则化用于网络的训练。在本文的这一部分中,将使用与第一部分中开发的相同的神经网络设计方法来报告反向模型,即从颜色外观属性中进行比色值的归并。该研究应为构建人工神经网络做出贡献基于V的颜色外观预测(正向和反向),使用最全面的LUTCHI颜色外观数据集进行训练和测试。使用研究中建立的神经网络获得了良好的预测准确性和泛化能力。由于神经网络方法是黑盒方法,因此使用此方法的颜色外观预测应该更容易在实践中应用。

著录项

  • 作者

    Xin JH; Shao S; Chung K;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号