首页> 外文OA文献 >Optimisation of fault-tolerant fabric-cutting schedules using genetic algorithms and Fuzzy Set Theory
【2h】

Optimisation of fault-tolerant fabric-cutting schedules using genetic algorithms and Fuzzy Set Theory

机译:利用遗传算法和模糊集理论优化容错面料裁剪计划

摘要

In apparel industry, manufacturers developed standard allowed minutes (SAMs) databases on various manufacturing operations in order to facilitate better scheduling, while effective production schedules ensure smoothness of downstream operations. As apparel manufacturing environment is fuzzy and dynamic, rigid production schedules based on SAMs become futile in the presence of any uncertainty. In this paper, a fuzzification scheme is proposed to fuzzify the static standard time so as to incorporate some uncertainties, in terms of both job-specific and human related factors, into the fabric-cutting scheduling problem. A genetic optimisation procedure is also proposed to search for fault-tolerant schedules using genetic algorithms, such that makespan and scheduling uncertainties are minimised. Two sets of real production data were collected to validate the proposed method. Experimental results indicate that the genetically optimised fault-tolerant schedules not only improve the operation performance but also minimise the scheduling risks.
机译:在服装行业,制造商针对各种制造操作开发了标准允许的分钟数(SAM)数据库,以促进更好的调度,而有效的生产调度可确保下游操作的顺利进行。由于服装制造环境是模糊和动态的,因此在存在任何不确定性的情况下,基于SAM的严格生产计划将变得毫无用处。在本文中,提出了一种模糊化方案来对静态标准时间进行模糊化处理,以便将特定于工作和人为因素的不确定性纳入织物裁剪调度问题中。还提出了一种遗传优化程序,以使用遗传算法来搜索容错计划,从而最小化了制造期和计划不确定性。收集了两组实际生产数据以验证所提出的方法。实验结果表明,经过遗传优化的容错调度不仅可以提高运行性能,而且可以最大程度地降低调度风险。

著录项

  • 作者

    Kwong CK; Wong WK; Mok PY;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号