首页> 外文OA文献 >Data mining for hotel occupancy rate : an independent component analysis approach
【2h】

Data mining for hotel occupancy rate : an independent component analysis approach

机译:酒店入住率的数据挖掘:一种独立的成分分析方法

摘要

The recent global financial crisis and the threat of a worldwide H1N1 influenza epidemic have greatly affected the tourism and hospitality industries around the world. Both hospitality practitioners and researchers are interested in finding analytical methods that enable forecasts to be made of hotel room demand under the uncertain conditions likely to affect the industry. In this article, a novel data mining technique called independent component analysis (ICA) is proposed to establish the major factors determining the hotel occupancy rate in Hong Kong. Then, extension of the model is suggested, incorporating these factors to decompose hotel occupancy rates and examine the effect of each factor on the hotel occupancy rate. Empirical findings show that outbreaks of infectious diseases, economic performance, and service price were the major determinants of the hotel occupancy rate in Hong Kong over the period studied.
机译:最近的全球金融危机和全球H1N1流感流行的威胁极大地影响了世界各地的旅游和酒店业。酒店从业者和研究人员都对寻找分析方法感兴趣,这些分析方法可以在可能影响行业的不确定条件下对酒店客房需求做出预测。在本文中,提出了一种称为独立成分分析(ICA)的新颖数据挖掘技术,以建立决定香港酒店入住率的主要因素。然后,建议对该模型进行扩展,并结合这些因素来分解酒店入住率,并检查每个因素对酒店入住率的影响。实证研究表明,传染病的爆发,经济表现和服务价格是研究期间香港酒店入住率的主要决定因素。

著录项

  • 作者

    Wu EHC; Law R; Jiang B;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号