首页> 外文OA文献 >Video Objects Segmentation by Robust Background Modeling
【2h】

Video Objects Segmentation by Robust Background Modeling

机译:通过稳健的背景建模进行视频对象分割

摘要

This paper deals with the problem of segmenting a video shot into a background (still) mosaic and one or more foreground moving objects. The method is based on ego-motion compensation and background estimation. In order to be able to cope with sequences where occluding objects persist in the same position for a considerable portion of time, the papers concentrates on robust background estimation method. First the sequence is subdivided in patches that are clustered along the time-line in order to narrow down the number of background candidates. Then the background is grown incrementally by selecting at each step the best continuation of the current background, according to the principles of visual grouping. The method rests on sound principles in all its stages, and only few, intelligible parameters are needed. Experiments with real sequences illustrate the approach
机译:本文涉及将视频镜头分割为背景(静止)马赛克和一个或多个前景移动对象的问题。该方法基于自我运动补偿和背景估计。为了能够处理遮挡对象在相当长的时间内停留在相同位置的序列,论文着重研究了鲁棒的背景估计方法。首先,将序列细分为沿着时间线聚集的补丁,以缩小背景候选对象的数量。然后,根据视觉分组的原理,通过在每个步骤中选择当前背景的最佳延续来逐渐增加背景。该方法在其所有阶段都基于合理的原理,并且仅需要很少的可理解参数。用真实序列进行的实验说明了该方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号