首页> 外文OA文献 >Exploiting news to categorize tweets: Quantifying the impact of different news collections
【2h】

Exploiting news to categorize tweets: Quantifying the impact of different news collections

机译:利用新闻对推文进行分类:量化不同新闻集的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Short texts, due to their nature which makes them full of abbreviations and new coined acronyms, are not easy to classify. Text enrichment is emerging in the literature as a potentially useful tool. This paper is a part of a longer term research that aims at understanding the effectiveness of tweet enrichment by means of news, instead of the whole web as a knowledge source. Since the choice of a news collection may contribute to produce very different outcomes in the enrichment process, we compare the impact of three features of such collections: volume, variety, and freshness. We show that all three features have a significant impact on categorization accuracy. Copyright © 2016 for the individual papers by the paper's authors.
机译:短文本由于其性质而使它们充满缩写和新的缩写词,因此不容易分类。文本丰富化正在作为一种潜在的有用工具在文学中崭露头角。本文是一项长期研究的一部分,旨在通过新闻而不是整个网络作为知识来源来了解推文丰富的有效性。由于新闻集的选择可能有助于在浓缩过程中产生截然不同的结果,因此,我们比较了新闻集的三个特征的影响:数量,种类和新鲜度。我们表明,所有这三个功能都对分类准确性有重大影响。版权所有©2016,该论文的作者为每篇论文。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号