首页> 外文OA文献 >Quality Assessment of Post-Processed Images
【2h】

Quality Assessment of Post-Processed Images

机译:后处理图像的质量评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The vast majority of the work done in the field of quality assessmentduring last two decades has been dedicated to the quantification ofthe distortion caused by the processing of an image. The originalimage was, therefore, always considered to be of the best possiblequality. In this kind of scenario, the notion of quality can beexpressed as the fidelity of the processed version to the reference.However, some post-processing algorithms enable to adjustaesthetic properties of an image in order to enhance the perceivedquality. In such cases, the best possible quality image is notavailable and the classical fidelity approach is no longer applicable.The goal of this thesis is to revise the quality assessmentmethodologies to cope with the challenges brought by thepost-processing into the quality evaluation. The post-processingalgorithms, relevant to the topic of this thesis, come from two groups– image enhancement, represented by image sharpening, anddynamic range compression (also known as tone-mapping)techniques. Both subjective and objective quality assessmentmethodologies applicable in these areas are studied and thesuitable solutions, outperforming the state-of-the-art methods, areproposed. Moreover, a novel methodology for evaluating theperformance of objective quality metrics, overcoming theshortcomings of the currently available methods, is presented.
机译:在过去的二十年中,在质量评估领域所做的绝大多数工作都致力于量化由图像处理引起的失真。因此,原始图像始终被认为具有最佳质量。在这种情况下,质量的概念可以表示为已处理版本对参考的保真度。但是,某些后处理算法可以调整图像的美学属性,以增强感知质量。在这种情况下,无法获得最佳的质量图像,经典的保真度方法不再适用。本文的目的是修改质量评估方法,以应对后处理对质量评估带来的挑战。与本论文主题相关的后处理算法来自两类:以图像锐化为代表的图像增强和动态范围压缩(也称为色调映射)技术。研究了适用于这些领域的主观和客观质量评估方法,并提出了优于最新方法的合适解决方案。此外,提出了一种新颖的方法,用于评估客观质量指标的性能,克服了当前可用方法的缺点。

著录项

  • 作者

    Krasula Lukáš;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号