首页> 外文OA文献 >Adaptive selections of sample size and solver iterations in stochastic optimization with applicåation to nonlinear commodity flow problems
【2h】

Adaptive selections of sample size and solver iterations in stochastic optimization with applicåation to nonlinear commodity flow problems

机译:随机优化中样本量和求解器迭代的自适应选择,并应用于非线性商品流问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present an algorithm to approximately solve certain stochastic nonlinear programs through sample average approximations. The sample sizes in these approximations are selected by approximately solving optimal control problems defined on a discrete-time dynamic system. The optimal-control problem seeks to minimize the computational effort required to reach a near-optimal objective value of the stochastic nonlinear program. Unknown control-problem parameters such as rate of convergence, computational effort per solver iteration, and optimal value of the program are estimated within a receding horizon framework as the algorithm progresses. The algorithm is illustrated with single-commodity and multi-commodity network flow models. Measured against the best alternative heuristic policy we consider for selecting sample sizes, the algorithm finds a near-optimal objective value on average up to 17% faster. Further, the optimal-control problem also leads to a 40% reduction in standard deviation of computing times over a set of independent runs of the algorithm on identical problem instances. When we modify the algorithm by selecting a policy heuristically in the first stage (only), we improve computing time, on average, by nearly 47% against the best heuristic policy considered, while reducing the standard deviation across the independent runs by 55%.
机译:我们提出一种算法,通过样本平均逼近来近似求解某些随机非线性程序。通过近似解决离散时间动态系统上定义的最佳控制问题,可以选择这些近似值中的样本大小。最优控制问题试图使达到随机非线性程序的接近最佳目标值所需的计算量最小化。随着算法的发展,在后退的水平框架内估计未知的控制问题参数,例如收敛速度,每次求解器迭代的计算量以及程序的最佳值。用单商品和多商品网络流模型说明了该算法。相对于我们在选择样本量时考虑的最佳替代启发式策略进行衡量,该算法发现平均近乎最佳的目标值的速度快了17%。此外,最优控制问题还导致在相同问题实例上,该算法的一组独立运行使计算时间的标准偏差减少了40%。当我们在第一阶段(仅)通过启发式选择策略来修改算法时,相对于考虑的最佳启发式策略,我们平均将计算时间缩短了近47%,同时将独立运行的标准偏差降低了55%。

著录项

  • 作者

    Vondrak David A.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号