首页> 外文OA文献 >A neural network approach to multisensor data fusion for vessel traffic services
【2h】

A neural network approach to multisensor data fusion for vessel traffic services

机译:用于船舶交通服务的多传感器数据融合的神经网络方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis explores the use of neural networks to perform multisensor data fusion for Vessel Traffic Services (VTS). It begins with a detailed study of the VTS system in order to identify the type of input data and other system features that are suitable for fusion. This is followed by a brief study of the various neural networks to evaluate their suitability for data fusion applications. The Kohonen's self-organizing feature map (SOFM) was identified as the most suitable neural network that can be used for data fusion, but it has some limitations that make it unsuitable for solving the VTS data fusion problem. A neural network data fusion model was proposed that consists of a modified SOFM and a double fusion resolver to solve the problem of double fusion in VTS. The proposed model is simulated in software and tested with measured input data supplied by the U.S. Coast Guard. Results of fusion tests indicate that the proposed fusion system performs well; thus, the proposed neural network fusion model has potential for implementation in the VTS system.
机译:本文探讨了使用神经网络对船舶交通服务(VTS)进行多传感器数据融合。它从对VTS系统的详细研究开始,以识别输入数据的类型和其他适合融合的系统功能。接下来是对各种神经网络的简要研究,以评估其对数据融合应用的适用性。 Kohonen的自组织特征图(SOFM)被认为是最适合用于数据融合的神经网络,但是它有一些局限性使其不适合解决VTS数据融合问题。提出了一种神经网络数据融合模型,该模型由改进的SOFM和双融合分解器组成,以解决VTS中的双融合问题。提出的模型在软件中进行了仿真,并使用了美国海岸警卫队提供的测量输入数据进行了测试。融合测试结果表明,所提出的融合系统性能良好。因此,所提出的神经网络融合模型具有在VTS系统中实现的潜力。

著录项

  • 作者

    Koh Leonard Phin-Liong;

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号