首页> 外文OA文献 >Deep-sea stylasterid corals in the Antarctic, sub-Antarctic and Patagonian Benthos : biogeography, phylogenetics, connectivity and conservation
【2h】

Deep-sea stylasterid corals in the Antarctic, sub-Antarctic and Patagonian Benthos : biogeography, phylogenetics, connectivity and conservation

机译:南极,亚南极和巴塔哥尼亚底栖生物中的深海针aster类珊瑚:生物地理学,系统发育学,连通性和保护

摘要

Large aggregations of sylasterid corals have been identified throughout the offshoreudwaters of the Antarctic, Sub-Antarctic and South America. These biodiverse regions are interspersedudby deep trenches, channels, sedimentary plains and isolated rocky habitat, whichudmay facilitate or inhibit dispersal over evolutionary and ecological time scales. Deep-seaudsampling has increased exponentially, across these benthic habitats, due to collaborative projectsudsuch as the Census of Antarctic Marine Life (CAML). Consequently, it is now possibleudto attempt to combine genetic and taxonomic expertise, explore evolutionary relationshipsudand assess this data in relation to environmental change – both past and future.udThe biogeographic distribution of stylasterid corals is representative of populationudisolation, based on the discovery of dissimilar species aggregations throughout sampled regions.udTo further investigate this biogeographic pattern, I sampled all 33 of the known stylasteridudspecies documented from the Antarctic, Sub-Antarctic, South West Atlantic and Patagonianudfiord regions across depths (~10 m - > 2000 m), geographic spatial scales (~10 km –ud10, 000 km), and habitat types (shelf, slope, seamount and fiords). Genetic relationshipsudwere investigated using DNA sequence data from multiple gene regions including: The mitochondrialudribosomal subunit (16S), cytochrome c oxidase subunit 1 (CO1), and the nuclearudInternal Transcribed Spacer (ITS). This data was assigned to four research components touddetermine 1) the biogeographic distribution of Antarctic and Sub-Antarctic stylasterids (n =ud33 species, 14 genera). 2) Phylogenetic relationships based on morphology and genetics (n =ud12 species, 8 genera). 3) Phylogenetic relationships incorporating the fossil record, to assessudthe evolutionary history of stylasterid populations in the Drake Passage (n = 7 species, 6udgenera), and lastly, 4) genetic and demographic connectivity between populations to informudconservation management regimes (n = 7 species, 4 genera).udMorphological taxonomy combined with mitochondrial DNA sequence data produceduda well aligned phylogenetic cladogram. The genetic variability seen in stylasterid 16S andudCO1 sequences was comparatively higher than other coral and hydrozoan studies, offeringudpotential for these gene regions in DNA barcoding. This has practical implications includingudthe discovery of new species, cataloguing of Antarctic biodiversity and identification of specimensudthat are impossible to determine by taxonomic means. However, phylogenetic and taxonomicudalignment was only achieved through the incorporation of systematic expertise inudspecies identification, and inter-species relationships remain unresolved when compared to the nuclear ITS gene region. Therefore, the incorporation of more gene regions for study, andudthe use of molecular taxonomy as a complementary tool, rather than a replacement for traditionaludsystematics is recommended for future studies.udWhen the mitochondrial phylogeny was calibrated with the fossil record, phylogeneticudtopology represented an evolutionary scenario in which stylasterid ancestors’ speciated in theudDrake Passage during the Eocene/Oligocene transition boundary from calcite to aragonite seaudconditions (~ 34 MYA). The phylogeny also suggests that skeletal bi-mineralogy may haveudplayed a central role in the speciation process. The presence of calcite in some genera andudliterature on the utility of either calcite or aragonite through oceanic time suggest a successionaludprogression toward aragonite mineralogy in response to modern oceanic conditionsud(Oligocene => modern). Further research in this area may lead to the identification of acclimationudstates in stylasterid corals, and information on their ability to buffer impending oceanudacidification, as the chemical state of the Southern Ocean shifts towards calcite sea conditionsudin the near future.udWhen investigating genetic population connectivity in the Sub-Antarctic, and across theudPolar Front into South America, estimates demonstrate limited to no gene-flow across spatialudscales of 300 - > 1000 km. Large scale comparisons were clearly subdivided, and geneticudsubdivision was evident both among populations either side of, and north of the Polar Frontudbased on CO1 data. However, disparate gene-flow estimates derieved from 16S signify thatudpopulations were connected through evolutionary linkages, and connectivity south of the PolarudFront may be amplified by the presence of the Antarctic Circumpolar Current (ACC). Forudfine scale comparision, local estimates of connectivity (~ 200 km) between two Errina spp.udfiord populations in Patagonia, Chile, showed no evidence of genetic subdivision (FST = 0, pud= 0.6). Similarly, Errina spp in East Antarctica also showed no evidence of genetic subdivisionud(ITS-1 FST = 0.03 P = 0.165 and ITS-2 FST = 0.002, P = 0.27). However, despite a lack ofudgenetic differentiation in ITS Errina population comparisons, haplotype networks typify audpattern of adaptive radiation from a common ancestor, and upon comparing nucleotide polymorphismudin CO1 (π =0.012 – 0.11), 16S (π =0 – 0.05), ITS-1 (π 0 - 0.002) and ITS-2 (π 0.02ud– 0.03) it was determined that relative variability in 16S and ITS represented historic connections,udwhilst CO1 being more variable, may also be more recent.udTaken together, results suggest that a multitude of factors influence stylasterid coraludpopulations, and temporal variation is particularly important in the context of this study. It isudrecommended that researchers focus on contemporary measures of connectivity, preserveudspecimens with genetic research in mind (> 90% ethanol preservation at the time of collection), and incorporate more loci to test connectivity across multiple spatial scales and species.udThe potential use of CO1 or 16S as barcoding genes will help in this process. However, untiludfunding towards more deep-sea Antarctic sampling and molecular information emerges, theuddata presented in this thesis has ascribed a measure of localised geographic segregation, historicudisolation and a limited capacity to recover following benthic disturbance. Substantiatingudthat stylasterid corals congregate in diminutive and isolated populations. Therefore, to preemptudanthropogenic damage to coral ecosystems, patterns of geographic isolation need to beudincorporated into the design of Antarctic Marine Protected Areas (MPAs) - to preserve essentialudhabitat, buffer climate change, mitigate the effects of ocean acidification, and combat localisedudimpacts such as destructive fisheries which pose a direct threat to coral populations,udand their associated taxa.
机译:在南极,次南极和南美的近海 udwaters中都发现了大型的西拉类珊瑚。这些生物多样性地区散布着深的沟渠,河床,沉积平原和孤立的岩石生境,这可能会促进或抑制在进化和生态时间尺度上的扩散。由于诸如南极海洋生物普查(CAML)之类的合作项目,在这些底栖生境中,深海采样/采样已成倍增加。因此,现在有可能 ud尝试结合遗传学和分类学专业知识,探索进化关系 ud并评估与环境变化有关的数据,包括过去和未来。 ud针叶珊瑚的生物地理分布代表了种群疏散,基于 ud为了进一步研究这种生物地理模式,我对南极,南极,西南大西洋和巴塔哥尼亚 udfiord地区记录的所有33种已知的笔触类 ud物种进行了采样(〜 10 m-> 2000 m),地理空间尺度(〜10 km – ud10,000 km)和栖息地类型(架子,斜坡,海山和峡湾)。遗传关系使用来自多个基因区域的DNA序列数据进行了研究,这些数据包括:线粒体核糖体亚基(16S),细胞色素C氧化酶亚基1(CO1)和核 ud内部转录间隔区(ITS)。该数据被分配给四个研究部分以决定1)南极和亚南极笔触动物的生物地理分布(n = ud33种,14属)。 2)基于形态学和遗传学的系统发生关系(n = ud12种,8属)。 3)结合化石记录的系统发生关系,以评估 udrak通道(n = 7种,6 udgenera)中甾体类种群的进化历史,最后,4)种群之间的遗传和人口学联系,以告知 udconservation管理制度(n = 7种,4属)。 ud形态学分类法与线粒体DNA序列数据相结合,系统排列的进化枝条图非常好。在星形甾体16S和udCO1序列中发现的遗传变异性相对高于其他珊瑚和水生动物研究,为DNA条形码中的这些基因区域提供了潜在的优势。这具有实际意义,包括发现新物种,对南极生物多样性进行分类以及标本的鉴定,这是无法通过分类学方法确定的。但是,系统发育和分类学上的失调只能通过在物种鉴定中引入系统的专业知识来实现​​,并且与核ITS基因区域相比,物种间的关系仍然无法解决。因此,建议将来使用更多的基因区域进行研究,并建议使用分子分类法作为补充工具,而不是替代传统的 udsystemistics。 ud当根据化石记录校准线粒体系统发育时,系统发生 udtopology代表了一种演化场景,其中始新世/渐新世从方解石到文石海 udconditions(〜34 MYA)的 udDrake通道中指定了类固醇类祖先。系统发育还表明骨骼双矿物学可能在物种形成过程中发挥了核心作用。方解石的存在和某些种类的化合物在整个海洋时间都对方解石或文石具有实用性,说明对现代海洋条件的响应是朝文石矿物学的一个连续超进展(渐新世=>现代)。随着南大洋的化学状态向方解石海况转变,在不久的将来,对这一领域的进一步研究可能会导致鉴定出针石珊瑚的驯化 udstates,以及有关它们缓冲即将来临的海洋 udacidification的能力的信息。 ud在调查南极洲和整个南美洲的udPolar锋线上的遗传种群连通性时,估计数表明,在300-> 1000 km的空间 udscale范围内,没有基因流。根据CO1数据,可以将大规模比较清楚地细分,并且在极地锋 ud两侧和北部的种群之间的遗传 ud细分都是明显的。但是,从16S得出的不同的基因流估计值表明,种群通过进化联系相互连接,而南极洲极地电流(ACC)可能会放大Polar udFront以南的连通性。为了进行精确的规模比较,智利巴塔哥尼亚的两个Errina spp。 udfiord种群之间的连通性(〜200 km)的局部估计值没有显示基因细分的证据(FST = 0,p ud = 0.6)。同样,南极东部的Errina spp也未显示遗传细分的证据 ud(ITS-1 FST = 0.03 P = 0.165和ITS-2 FST = 0.002,P = 0.27)。然而,尽管在ITS Errina人群比较中缺乏预算分化,单倍型网络还是来自共同祖先的适应性辐射的模式,并且在比较核苷酸多态性 udin CO1(π= 0.012 – 0.11),16S(π= 0)时– 0.05),ITS-1(π0-0.002)和ITS-2(π0.02 ud– 0.03),可以确定16S和ITS的相对变异性代表历史联系, CO1更具可变性,也可能更大综上所述,结果表明,多种因素影响着金针石珊瑚的种群,而时间变化在这项研究中尤为重要。建议不要将研究者的注意力集中在当代的连通性度量上,同时要考虑遗传学的研究来保存标本(收集时> 90%的乙醇保存),并结合更多的基因座来测试跨多个空间尺度和物种的连通性。潜在使用CO1或16S作为条形码基因将有助于此过程。但是,直到为更深海的南极采样和分子信息提供资金支持之前,本论文提供的uddata都已将局部地理隔离,历史消弱和底栖扰动后恢复的能力有限归因于一种措施。证明不到样式的珊瑚聚集在少数的和孤立的人口。因此,为防止人类活动对珊瑚生态系统的破坏,需要将地理隔离模式纳入南极海洋保护区(MPA)的设计中-以保护必要的栖息地,缓冲气候变化,减轻海洋酸化的影响,以及应对局部性 udud的影响,例如对珊瑚种群,ud及其相关分类群构成直接威胁的破坏性渔业。

著录项

  • 作者

    Bax N;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号