首页> 外文OA文献 >Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty
【2h】

Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty

机译:基于多元纹理的遥感图像分割方法用于对象提取及其不确定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, a segmentation procedure is proposed, based on grey-level and multivariate texture to extract spatial objects from an image scene. Object uncertainty was quantified to identify transitions zones of objects withindeterminate boundaries. The Local Binary Pattern (LBP) operator, modelling texture, was integrated into a hierarchical splitting segmentation to identify homogeneous texture regions in an image. We proposed a multivariate extension of the standard univariate LBP operator to describe colour texture. The paper is illustrated with two case studies. The first considers an image with a composite of texture regions. The two LBP operators provided good segmentation results on both grey-scale and colour textures, depicted by accuracy values of 96% and 98%, respectively. The second case study involved segmentation of coastal land cover objects from a multi-spectral Compact Airborne Spectral Imager (CASI) image, of a coastal area in the UK. Segmentation based on the univariate LBP measureprovided unsatisfactory segmentation results from a single CASI band (70% accuracy). A multivariate LBP-based segmentation of three CASI bands improved segmentation results considerably (77% accuracy). Uncertainty values for object building blocks provided valuable information for identification of object transition zones. We conclude that the (multivariate) LBP texture model in combination with a hierarchical splitting segmentation framework is suitable for identifying objects and for quantifying their uncertainty.
机译:在这项研究中,提出了一种基于灰度和多元纹理的分割程序,以从图像场景中提取空间对象。对物体的不确定性进行了量化,以识别物体在确定边界内的过渡区域。建模纹理的局部二值模式(LBP)运算符已集成到分层拆分分割中,以识别图像中的均匀纹理区域。我们提出了标准单变量LBP算子的多元扩展来描述颜色纹理。本文通过两个案例研究进行说明。首先考虑具有纹理区域合成的图像。这两个LBP运算符在灰度和彩色纹理上均提供了良好的分割结果,分别以96%和98%的精度值表示。第二个案例研究涉及从英国沿海地区的多光谱紧凑型机载光谱成像仪(CASI)图像中分割沿海土地覆盖物。基于单变量LBP度量的细分提供了单个CASI波段(70%的准确度)无法令人满意的细分结果。三个CASI带的基于LBP的多变量分割大大改善了分割结果(准确度达77%)。对象构造块的不确定性值为识别对象过渡区提供了宝贵的信息。我们得出的结论是,(多变量)LBP纹理模型与分层拆分分割框架相结合,适用于识别对象并量化其不确定性。

著录项

  • 作者

    Lucieer A; Stein A; Fisher PF;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号