首页> 外文OA文献 >Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a regional data set
【2h】

Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a regional data set

机译:Enderby和Mac大陆边缘的地质。罗伯逊·兰兹(Robertson Lands),南极东部:来自区域数据集的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarcticaudfrom west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismicuddata with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys.udIntegration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector ofudthe Antarctic margin.udThis part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, whichudculminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanicudcrust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58 E. Across thisudboundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard fromudwest to east by about 100 km.udStructure in the sector west of 58 E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–udProterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted toudunderlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with theudavailable data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are upudto 6 km thick beneath the lower continental slope.udThe COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the baseudof a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system.udOceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distancesudof 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profileudappears unusual, with velocities of 7.6–7.95 km s)1 being recorded at several stations at a depth that gives a thickness ofudcrust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones.udAlternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantleudrocks.udThe sector east of 58 E has formed in a normal rifted margin setting, with complexities in the east from the underlyingudstructure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 kmudbeneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the riftstageudrocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to aboutud8 km thick.udThe interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with audprominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary isudsupported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character,udcommonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustaludlayer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4)uda strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantleudreflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins thatuddeveloped between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvierudmargin of northwest Australia.
机译:在2001年和2002年,澳大利亚从恩德比土地以西到普里兹湾的近海东部南极洲深水大陆边缘采集了一个综合的地球物理数据集。这些数据包括大约7700公里的高品质深地震 ud数据,同时具有重力,磁和测深数据,以及37个使用消耗性声波浮标的非反向折射站。 ud将这些数据与日本在1999年记录的质量相似的数据相结合可以对南极边缘的这一部分进行新的区域解释。 ud南极大陆边缘的这一部分是在印度东部边缘和东极南极解体期间形成的,这说明了瓦朗吉尼亚海底扩散的开始。可以通过约58 E的解释性地壳边界将南极边缘和邻近的洋地壳的地质划分为不同的东西部。横跨这个边界,大陆-海洋边界(COB)被定义为内侧边缘在明确的大洋壳中,从西北到东方向外侧约100 km。 ud 58 E以西的扇形结构在很大程度上受混合裂谷转换环境的控制。陆生的古生界 ud元古代纳皮尔综合体的边缘在架子边缘附近向海向下断裂至少6 km,这些岩石被解释为 u在大陆斜坡下方的裂谷盆地之下。裂谷和裂谷前岩石的厚度无法通过可用数据准确确定,但它们似乎相对较薄。边缘被裂隙后的沉积岩覆盖,该沉积后的沉积岩在较低的大陆斜坡下方厚达 udd 6 km。 ud根据地震反射数据和势场建模来解释该部分的COB,使其与基底吻合。在8.0-8.5 s的双向时间udof地下凹陷,距陆架边缘边界断层系统约170 km。 ud该区域的洋壳在性质上变化很大,起伏超过1 km时起伏不平距离 udof 10–20 km,到在长波状起伏基底上设置低振幅起伏的褶皱。地壳速度剖面 ud显得异常,在几个台站处记录的速度为7.6–7.95 km s)1,其深度仅为 u壳厚度。如果这些速度来自地幔,那么薄的地壳可能是由于裂缝带的存在。 ud或者,速度可能来自下地壳,由于地幔 udrock的侵入已大大改变了地壳。 58 E的形成是在正常的裂谷边缘环境中形成的,其东部复杂于N-S趋势古生代Lambert Graben的下伏地下构造。纳皮尔综合体向下断裂至上大陆斜坡下方8–10 km ud深度,边缘裂谷盆地宽300多公里。与西方地区一样,裂谷地基可能相对较薄。边缘的这一部分被裂谷后厚达 ud8 km的沉积物所覆盖。 ud东部地区的解释性COB是深水中最突出的边界,通常与向海的隆升相吻合。在地下室的高度可达1公里。与西方一样,该边界的解释受势场建模的支持。该区域中与COB相邻的洋壳具有非常鲜明的特征,通常是(1)短的向海浸水在光滑的上表面之下; (2)透明的上地壳覆盖层; (3)下部地壳以浸入高振幅反射为主,该反射可能反映了剪切作用的改变或改变; (4) uda强反射莫霍面,通过地震折射模型确定; (5)在几条相邻的线上有明显的向陆地上倾的地幔反射。在大印度地区与澳大利亚之间的同时期海盆中也发现了类似的洋壳样式,即南极边缘布鲁斯里斯以西的南极,以及澳大利亚西北部的居维叶 udmargin。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号