首页> 外文OA文献 >The Archean Cu-Zn magnetite-rich Gossan HilludVHMS deposit, Western Australia: Evidence of audstructurally-focussed, exhalative and sub-seafloorudreplacement mineralising system
【2h】

The Archean Cu-Zn magnetite-rich Gossan HilludVHMS deposit, Western Australia: Evidence of audstructurally-focussed, exhalative and sub-seafloorudreplacement mineralising system

机译:太古代富含铜锌磁铁矿的戈桑山 udVHMS存款,西澳大利亚州:a ud的证据注重结构,呼气和海底 ud替代矿化系统

摘要

The Archean Cu-Zn Gossan Hill volcanic-hosted massive sulphide deposit is situated onudthe northeast flank of the Warriedar Fold Belt in the Yilgarn Craton, Western Australia.udThe deposit is hosted within re-deposited rhyodacitic tuffaceous volcaniclastics of theudGolden Grove Formation and is overlain by rhyodacite-dacite lavas and intrusive domesudof the Scuddles Formation. The Gossan Hill deposit consists of two discrete subverticaludore zones situated stratigraphically 150 m apart in the middle and upper Golden GroveudFormation. The stratigraphically lower Cu-rich ore zone (7.0 Mt @ 3.4% Cu) consists ofudstratabound, podiform to discordant massive pyrite-chalcopyrite-pyrrhotite-magnetite. Inudaddition to massive sulphides, the lower ore zone also contains discordant to sheet-W,eudzones of massive magnetite-carbonate-chlorite-talc (-12 }·ft). The upper Zn-Cu ore zoneud(2.2 Mt @ 11.3% Zn, 0.3% Cu, 15 glt Au and 102 glt Ag) is mound-shaped with sheetW,ude, stratabound, massive sphalerite-pyrite-chalcopyrite overlying discordant massiveudpyrite-pyrrhotite-chalcopyrite-magnetite. A sulphide-rich vein stockwork connects theudupper and lower ore zones. Metal zonation grades from Cu-Fe (±Au) in the lower oreudzone to Zn-Cu-nch sulphides at the base of the upper ore zone. The upper ore zoneudgrades upwardS and laterally from Zn-Cu to Zn-Ag-Au (tCu, tPb)-rich sulphides.udRegional preservation of primary tuffaceous volcanic textures within the Golden GroveudFormation is attributed to an early syndepositional, quartz-chlorite alteration. Indurationudand differential permeabilityI porosity reduction of the succession during the earlyudalteration W,ely promoted more-focussed pad1ays for successive hydrothermal fluids.udSubsequent hydrothermal alteration related to mineralisation at Gossan Hill has a limitedudlateral extent, and forms a narrow Fe-chlorite-ankerite-siderite envelope to the massiveudmagnetite and sulphide of the lower ore zone, and an intense siliceous envelopeudsurrounding d,e stockwork and upper ore position. Pervasive calcite-muscovite alterationudis recognised Ul d,e hangingwall volcanics of the ScuddIes Formation.udThe nature of deformation and metamorphism (greenschist facies: 454 t 4°C at I kbarudbased on andalusite-chloritoid-quartz equilibrium) is uniform throughout d,e massiveudmagnetite, massive sulphide and host succession. Sedllnent-sulphide-magnetiteudrelationships at Gossan Hill suggest d,e formation of magnetite and sulphide duringuddeposition of the upper Golden Grove Formation. Massive magnetite formed entirely byudsub-seafloor replacement processes as inferred from gradational upper and lower contactsudand interdigitating volcaniclastics. Replacement occurred along permeable tuffaceousudstrata outward from a discordant feeder. Massive magnetite was later veuled, replacedand cut by massive sulphide. The synchronous formation of both upper and lowerudsulphide ore zones is indicated by the connecting sulphide stockwork. Both sulphide oreudzones formed by sub-seafloor replacement, although stratiform hydrothermal chertsulphide-udsediment layers in, and adjacent to, the upper sulphide zone attest to someudexhalation of fluids onto the seafloor.udThe thickest occurrence of massive magnetite, massive sulphide and stringer stocb.-workudspatially coincide and support a common feeder conduit during massive magnetite andudsulphide mineralisation. The asymmetry of hydrothermal alteration envelopes, massiveudmagnetite and massive and veins sulphide zones are consistent with synvolcanic structuraludcontrols, with a growth structure occupied and obscured by a younger dacite dome fromudthe Scuddles Formation.udA systematic increase in sulphide 8;4S values (range of -4.0 to 7.8%0, average 2.1 ± 1.7%0)udstratigraphically upwards through massive and vein sulphide is suggestive of progressiveudmixing of upwelling ore fluids with entrained seawater. Homogeneous 8"s values ofud-1.5%0 in the lower ore zone have a consistent homogeneous rock sulphur source withudpossible magmatic contributions.udThe 8180 H20 values of ore fluids responsible for deposition of magnetite in massiveudmagnetite and disseminated magnetite in the sulphide zones range from 6%0 to 13%0.udThis data is inconsistent with the direct input of Archean seawater, and favoursudderivation of hydrothermal fluids by rock buffering of circulating fluids, or by directudmagmatic contribution.udThermodynamic considerations suggest massive magnetite and sulphide formed from highudtemperature (300° to 350°C), reduced (low f 0,), slightly acidic hydrothermal fluids. HzSdeficientudfluids formed massive magnetite, whilst HzS-rich fluids formed massiveudsulphides. Fluid chemistry differences are attributed to magmatic sulphur contributionsudduring sulphide mineralisation. Precipitation of sub-seafloor sulphide in the lower oreudzone resulted from chemical entrapment by the interaction of upwelling HzS-rich fluidsudwith pre-existing massive magnetite. It is suggested that shallow parental magmaudchambers to the Scuddles Formation drove hydrothermal convection of seawater and mayudhave supplied volatiles and HzS to the ascending hydrothermal fluids.udThe Gossan Hill sulphide-magnetite deposit represents an evolving hydrothermal systemudin an environment characterised by rapid volcaniclastic sedimentation and changingudstructural and magmatic processes. An important influence on this hydrothermal systemudwas the creation and destruction of porosity and permeability in the host succession. Theudhydrothermal system initiated as part of a regional seawater convection-alteration systemudthat led to VHMS mineralisation at Gossan Hill by (1) synsedimentary metasomatism andudprogressive heating of convecting fluids, (2) formation of massive magnetite by host rockudreplacement above a buried synvolcanic conduit, and (3) structural re-activation andudtapping of deeper HzS-rich and metal-bearing fluids, leading to the sub-seafloor sulphideudreplacement and local exhalation of hydrothermal fluids forming sulphide and chert.udBurial by proximal felsic volcanism led to preservation of the deposit.
机译:太古代Cu-Zn Gossan Hill火山成因的大型硫化物矿床位于西澳大利亚Yilgarn Craton的Warriedar褶皱带东北侧。 ud该矿床位于 udGolden Grove的重新沉积的流纹质凝灰质火山岩中。地层上覆盖着流纹岩-达克特熔岩和Scuddles地层的侵入性穹顶 ud。戈桑山矿床由两个离散的亚垂直伪矿带组成,地层上,中层Golden Grove udFormation地层相距150 m。地层较低的富铜矿带(7.0 Mt @ 3.4%Cu)由 ustratastrated,波状到不协调的块状黄铁矿-黄铜矿-蛇绿铁矿-磁铁矿组成。除块状硫化物外,下矿区还含有块状磁铁矿-碳酸盐-亚氯酸盐-滑石粉(-12} ft)的W-e区。上部的Zn-Cu矿石区 ud(2.2 Mt @ Zn 11.3%,Cu 0.3%,15 glt Au和102 glt Ag)呈丘状,呈片状W, ude,层状结合,块状闪锌矿-黄铁矿-黄铜矿覆盖不均匀块状 udpyrite-pyyrlotite-chalcopyrite-磁铁矿。富硫矿脉储层连接 upupper和下矿区。金属分区等级从下矿区的Cu-Fe(±Au)到上矿区底部的Zn-Cu-nch硫化物。上部矿带从锌-铜到富含锌-银-金(tCu,tPb)的硫化物向横向上和横向向内滑移。 ud在金格罗夫(Golden Grove)内原生凝灰质火山岩质地的区域保存归因于早期的同沉积石英-亚氯酸盐蚀变。硬结超​​差渗透率I早期消蚀W期间的演替孔隙度减小,从而促进了连续热液流体的集中度更高。 ud与戈桑山矿化有关的后续热液蚀变具有有限的外侧范围,并形成了下部矿带的块状磁铁矿和硫化物具有较窄的铁-亚氯酸盐-无铁矿-菱铁矿包膜,并且储层和上部矿石位置具有强烈的硅质包膜超周围。普遍的方解石-白云母蚀变 udis认为ScuddIes组的Ul d,e上壁火山活动。 ud变形和变质的性质(绿片岩相:454 t 4°C在I kbar ud基于红柱石-类氯酸盐-石英平衡)在整个过程中,块状磁铁矿,块状硫化物和主体继承。戈桑山上的硫化物-磁铁矿-磁铁矿的非关系表明,在上层金格罗夫组的沉积过程中磁铁矿和硫化物的形成。大量的磁铁矿完全由,, //////////////////////////////////////////////-/ / / //////进行。从不连续的进料器向外沿渗透性凝灰岩地层发生了置换。块状磁铁矿随后被覆盖,替换并被块状硫化物切割。硫化物储层的连接表明了上,下二硫化物矿区的同步形成。尽管在上硫化物区及其附近的层状热液切尔硫硫化物/沉积物层都证实了流体在海底的一些脱盐作用,但两个海底置换形成的两个硫化物矿产区都证明了海底流体的某些脱盐作用。在块状磁铁矿和硫化物矿化过程中,硫化物和桁条的台阶工作在空间上重合,并支撑一条公用的给水管道。热液蚀变包裹层,块状磁铁矿以及块状硫化物和带脉硫化物带的不对称性与同火山构造 udcontrol一致,生长结构被 udscuddles组中较年轻的dacite穹顶所占据和遮盖。 4S值(范围为-4.0至7.8%0,平均为2.1±1.7%0)从地层上通过块状和脉状硫化物向上上升,这提示上升流的矿液与夹带的海水逐渐混合。下部矿带中的均质8's ud-1.5%0具有一致的均质岩石硫源,具有不可能的岩浆作用。 ud负责大量磁铁矿磁铁矿和弥散磁铁矿中磁铁矿沉积的矿液的8180 H20值在硫化物带中,范围从6%0到13%0。 ud此数据与太古海水的直接输入,通过循环流体的岩石缓冲作用或直接超岩浆作用对水热流体的偏爱 udd不一致。考虑因素表明,高温/高温(300°至350°C),还原的(低f 0,),弱酸性热液流体会形成块状磁铁矿和硫化物。,而富含HzS的流体形成块状硫化物。流体化学差异归因于岩浆硫的贡献硫化物矿化过程中的硫。低矿石/ udzone中的海底硫化物的沉淀是由于上升的富含HzS的流体 ud与预先存在的块状磁铁矿的相互作用而导致的化学截留。有人认为,Scuddles组的浅层母岩浆腔推动了海水的热液对流,并可能为上升的热液提供了挥发物和HzS。 udGossan Hill硫化物-磁铁矿床代表了一个演化中的热液系统在具有一定特征的环境中通过快速的火山碎屑沉积和变化的结构,岩浆过程。对这个热液系统的重要影响是在主体演替过程中孔隙度和渗透率的产生和破坏。 udhydrothermal系统作为区域海水对流-蚀变系统的一部分而启动 ud,导致(1)沉积的交代作用和对流流体的 u渐进加热,导致Gossan Hill VHMS矿化,(2)主岩 udplacement形成块状磁铁矿(3)较深的富含HzS的含金属流体的结构重新活化和析出,导致海底下的硫化物置换和热液的局部呼出,从而形成硫化物和石。由近端长英质火山作用导致了该矿床的保存。

著录项

  • 作者

    Sharpe R;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号