首页> 外文OA文献 >Microwave holography of large reflector antennas
【2h】

Microwave holography of large reflector antennas

机译:大型反射器天线的微波全息术

摘要

This thesis describes experiments in Microwave Holography using the 26 m radio telescope at the Mount Pleasant Observatory, and the development of data processing methods to overcome a major limitation of traditional holographic measurements.udMicrowave Holography is a fast and effective technique for measuring the surface profile of reflector antennas. It requires measurement of the amplitude and phase of the antenna's far field radiation pattern. The Fourier transform relationship of the far field pattern to the aperture current function is used to estimate the aperture phase profile, which can be related directly to the surface profile. Using an unmodulated 12.7 GHz carrier signal transmitted by the AUSSAT-1 geostationary satellite, the 26 m diameter surface was measured to an accuracy of ±53 μm with a resolution of 0.6 m. Using a beacon signal, weaker by 20 dB, gave a comparable accuracy of ±64 μm. Each map took about 4 hours to record.udIn practice only a small part of the complete radiation pattern can be measured, so information about high spatial frequencies in the aperture is lost. This causes detailed structure in the surface error map to be smoothed out. Most large reflectors are constructed with panels, and misaligned panels give discontinuities in surface error which cannot be resolved. This can lead to incorrect assessment of panel positions.udSignificant improvement can be obtained by recognizing at the outset that the reflector surface is not smooth and continuous, but a collection of individual rigid panels. The Method of Successive Projections is an algorithm, with a simple geometrical interpretation, which allows information about the panel boundaries to be readily incorporated into the data reduction process. The algorithm is straight-forward to apply and is very flexible: aperture blockage effects do not disturb its operation, and panel distortions can be included in the analysis with minimal extra effort. Good results may be achieved while minimizing measurement time. This is an important consideration for high-performance antennas with a busy operating programme.
机译:本文介绍了在宜人山天文台使用26 m射电望远镜在微波全息术中进行的实验,以及克服传统全息测量的主要局限性的数据处理方法的发展。 ud微波全息术是一种用于测量表面轮廓的快速有效的技术反射天线。它需要测量天线远场辐射方向图的幅度和相位。远场图案与孔径电流函数的傅立叶变换关系用于估计孔径相位轮廓,该轮廓可以直接与表面轮廓相关。使用AUSSAT-1对地静止卫星发送的未经调制的12.7 GHz载波信号,对直径26 m的表面进行了测量,精度为±53μm,分辨率为0.6 m。使用一个弱20 dB的信标信号,可得到±64μm的可比精度。每个地图记录大约需要4个小时。 ud实际上,只能测量完整辐射图的一小部分,因此会丢失有关孔径中高空间频率的信息。这使表面误差图中的详细结构变得平滑。大多数大型反射镜都是由面板构成的,未对准的面板会使表面误差不连续,无法解决。这可能会导致对面板位置的错误评估。 ud通过首先识别出反射器表面不是平滑连续的而是单个刚性面板的集合,可以显着改善。连续投影方法是一种具有简单几何解释的算法,该算法允许将有关面板边界的信息轻松合并到数据缩减过程中。该算法易于应用并且非常灵活:孔径阻塞效应不会干扰其操作,并且面板失真可以以最小的额外努力就包括在分析中。可以在缩短测量时间的同时获得良好的结果。对于具有繁忙操作程序的高性能天线,这是一个重要的考虑因素。

著录项

  • 作者

    James GC;

  • 作者单位
  • 年度 1992
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号