首页> 外文OA文献 >Rated MCRDR: Finding non-Linear Relationships Between Classifications in MCRDR.
【2h】

Rated MCRDR: Finding non-Linear Relationships Between Classifications in MCRDR.

机译:额定的MCRDR:在MCRDR中查找类别之间的非线性关系。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiple Classification Ripple Down Rules (MCRDR) is a simple and effective knowledge acquisition technique that produces representations, or knowledge maps, of a human experts' knowledge of a particular domain. This knowledge map can then be used to automate and help the user perform classification and categorisation of cases while still being able to add more refined knowledge incrementally. While MCRDR has been applied in many domains, work on understanding the meta-knowledge acquired or using the knowledge to derive new information is still in its infancy. This paper will introduce a technique called Rated MCRDR (RM), which looks at deriving and learning information about both linear and non-linear relationships between the multiple classifications within MCRDR. This method uses the knowledge received in the MCRDR knowledge map to derive additional information that allows improvements in functionality within existing domains, to which MCRDR is currently applied, as well as opening up the possibility of new problem domains. Preliminary testing shows that there exists a strong potential for RM to quickly and effectively learn meaningful ratings.
机译:多重分类降低规则(MCRDR)是一种简单有效的知识获取技术,可生成人类专家在特定领域中的知识的表示形式或知识图。然后,可以使用该知识图来自动化并帮助用户执行案例的分类和分类,同时仍然能够递增地添加更多精炼的知识。尽管MCRDR已应用于许多领域,但了解获取的元知识或使用知识来获得新信息的工作仍处于起步阶段。本文将介绍一种称为“额定MCRDR(RM)”的技术,该技术着眼于推导和学习有关MCRDR中多个类别之间的线性和非线性关系的信息。此方法使用在MCRDR知识图中接收到的知识来导出其他信息,这些信息可以改进MCRDR当前应用到的现有域中的功能,并开辟新问题域的可能性。初步测试表明,RM有很大的潜力可以快速有效地学习有意义的评级。

著录项

  • 作者

    Dazeley R; Kang BH;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号