首页> 外文OA文献 >Weighted MCRDR: Deriving Information about Relationshipsbetween Classifications in MCRDR.
【2h】

Weighted MCRDR: Deriving Information about Relationshipsbetween Classifications in MCRDR.

机译:加权MCRDR:获取有关关系的信息MCRDR中的分类之间。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiple Classification Ripple Down Rules (MCRDR) is aknowledge acquisition technique that produces representations, or knowledge maps, of a human expert's knowledge of a particular domain. However, work on gaining an understanding of the knowledge acquired at a deeper meta-level or using the knowledge to derive new information is still in its infancy. This paper will introduce a technique called Weighted MCRDR (WM), which looks at deriving and learning information about the relationships between multiple classifications within MCRDR by calculating a meaningful rating for the task at hand. This is not intended to reduce the knowledge acquisition effort for the expert. Rather, it is attempting to use the knowledge received in the MCRDR knowledge map to derive additional information that can allow improvements in functionality of MCRDR in many problem domains. Preliminary testing shows that there exists a strong potential for WM to quickly and effectively learn meaningful weightings.
机译:多重分类波纹抑制规则(MCRDR)是一种知识获取技术,可生成人类专家在特定领域中的知识的表示形式或知识图。但是,在更深的元层次上获得对知识的了解或使用知识来获得新信息的工作仍处于起步阶段。本文将介绍一种称为加权MCRDR(WM)的技术,该技术通过为手头任务计算有意义的等级,着眼于推导和学习有关MCRDR中多个类别之间关系的信息。这并不是要减少专家的知识获取工作量。而是,它试图使用在MCRDR知识图中接收到的知识来得出可以在许多问题领域中改进MCRDR功能的附加信息。初步测试表明,WM具有快速有效地学习有意义的权重的强大潜力。

著录项

  • 作者

    Dazeley R; Kang BH;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号