首页> 外文OA文献 >Fuzzy modelling and robust control with applications to robotic manipulators
【2h】

Fuzzy modelling and robust control with applications to robotic manipulators

机译:模糊建模和鲁棒控制在机器人操纵器中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, fuzzy modelling of a class of nonlinear systems has been investigatedudbased on fuzzy logic and linear feedback control theory, and a few robust variableudstructure control schemes for nonlinear systems have been developed. A number ofudrobustness and convergence results with dramatically reduced control chattering areudpresented for variable structure control systems with applications to roboticudmanipulators in the presence of parameter variations and external disturbances. Theudmajor outcomes of the work described in this thesis are summarised as follows.udA robust tracking control scheme is proposed for a class of nonlinear systems withudfuzzy model. It is shown that a nominal system model for a nonlinear system isudestablished by fuzzy synthesis of a set of linearised local subsystems, where theudconventional linear feedback control technique is used to design a feedback controllerudfor the fuzzy nominal system. A variable structure compensator is then designed toudeliminate the effects of the approximation error and system uncertainties. Strongudrobustness with respect to large system uncertainties and asymptotic convergence ofudthe output tracking error are obtained.udA sliding mode control scheme using fuzzy logic and Lyapunov stability theory hasudbeen proposed. It is shown that a sliding mode is first designed to describe the desiredudsystem dynamics for the controlled system. A set of fuzzy rules are then used to adjustudthe controller's parameters based on the Lyapunov function and its time derivative.udThe desired system dynamics are then obtained in the sliding mode. The sliding modeudcontrollers with fuzzy tuning algorithm show the advantage of reducing the chatteringudof the control signals, compared with the conventional sliding mode controllers. A robust continuous sliding mode control scheme for linear systems with uncertaintiesudhas been presented. The controller consists of three components: equivalent control,udcontinuous reaching mode control and robust control. It retains the positive propertiesudof sliding mode control but without the disadvantage of control chattering. The proposed control scheme has been applied to the tracking control of a one-link roboticudmanipulator with fuzzy modelling of the nonlinear system.udA robust adaptive sliding mode control scheme with fuzzy tuning has been presented.udIt is shown that an adaptive sliding mode control is first designed to learn the systemudparameters with bounded system uncertainties and external disturbances. A set ofudfuzzy rules are then used to adjust the controller's uncertainty bound based on theudLyapunov function and its time derivative. The robust adaptive sliding modeudcontroller with fuzzy tuning algorithm show the advantage of reducing the chatteringudand the amplitude of the control signals, compared with the adaptive sliding modeudcontroller without fuzzy tuning. Experimental example for a five-bar robot arm isudgiven in support of the proposed control scheme.udFinally, a new adaptive sliding mode controller has been developed for trajectoryudtracking in robotic manipulators. This controller is able to estimate the constant partudof the system parameters as well as adaptively learn the uncertain part of the systemudparameters by the Gaussian neural network. It is shown that under a mild assumption,udthe proposed control law does not require measurement of acceleration signals. Thisudnew control law exhibits the good aspects of Slotine and Li's (1987) and keeps theudchattering to a minimum level. An experiment of a five bar robotic system was doneudand the results have confirmed the effectiveness of the approach.
机译:本文基于模糊逻辑和线性反馈控制理论对一类非线性系统的模糊建模进行了研究,并提出了几种鲁棒的非线性系统鲁棒变结构控制方案。对于存在参数变化和外部干扰的可变结构控制系统,在机器人操纵器上的应用,显示了许多 udrobustness和收敛结果,大大减少了控制抖动。本文工作的主要成果概括如下。 ud针对一类具有 udfuzzy模型的非线性系统,提出了一种鲁棒的跟踪控制方案。结果表明,通过模糊综合一系列线性化局部子系统,建立了非线性系统的标称系统模型,其中,采用常规的线性反馈控制技术为模糊标称系统设计反馈控制器。然后设计一个可变结构补偿器,以消除近似误差和系统不确定性的影响。获得了针对大型系统不确定性的强鲁棒性和输出跟踪误差的渐近收敛性。 ud提出了一种基于模糊逻辑和李雅普诺夫稳定性理论的滑模控制方案。示出了首先设计滑动模式来描述受控系统的期望的系统动态。然后,使用一组模糊规则基于Lyapunov函数及其时间导数来调整控制器的参数。 ud然后在滑动模式下获得所需的系统动力学。与传统的滑模控制器相比,具有模糊调节算法的滑模 ud控制器具有减少控制信号颤动 ud的优势。提出了一种不确定的线性系统鲁棒连续滑模控制方案。该控制器由三部分组成:等效控制,连续到达模式控制和鲁棒控制。它保留了滑模控制的积极特性,但没有控制抖动的缺点。所提出的控制方案已应用于具有非线性系统模糊建模的单链机器人机器人的跟踪控制。 ud提出了一种具有模糊调节的鲁棒自适应滑模控制方案。 ud表明自适应滑模首先设计模式控制来学习具有有限系统不确定性和外部干扰的系统超参数。然后使用一组 udfuzzy规则基于 udLyapunov函数及其时间导数来调整控制器的不确定性范围。与不带模糊调节的自适应滑模 udcontroller相比,具有模糊调节算法的鲁棒自适应滑模 udcontroller具有减少抖动 ud和控制信号幅度的优势。为支持所提出的控制方案,给出了五杆机器人手臂的实验示例。 ud最后,已经开发了一种新的自适应滑模控制器,用于机器人操纵器的轨迹 udtracking。该控制器能够估计系统参数的恒定部分 ud,并通过高斯神经网络自适应地学习系统的不确定部分 ud参数。结果表明,在温和的假设下,建议的控制律不需要测量加速度信号。这种新的控制定律展现了Slotine和Li(1987)的优点,并将其散射保持在最低水平。对五杆机器人系统进行了实验 ud,结果证实了该方法的有效性。

著录项

  • 作者

    Mei F;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号