首页> 外文OA文献 >Cutting tool condition monitoring of the turning process using artificial intelligence
【2h】

Cutting tool condition monitoring of the turning process using artificial intelligence

机译:使用人工智能监控车削过程中的刀具状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis relates to the application of Artificial Intelligence to tool wear monitoring. Themain objective is to develop an intelligent condition monitoring system able to detect when acutting tool is worn out. To accomplish this objective it is proposed to use a combined ExpertSystem and Neural Network able to process data coming from external sensors and combinethis with information from the knowledge base and thereafter estimate the wear state of thetool.The novelty of this work is mainly associatedw ith the configurationo f the proposeds ystem.W iththe combination of sensor-baseidn formation and inferencer ules, the result is an on-line systemthat can learn from experience and can update the knowledge base pertaining to informationassociated with different cutting conditions. Two neural networks resolve the problem ofinterpreting the complex sensor inputs while the Expert System, keeping track of previoussuccesse, stimatesw hich of the two neuraln etworks is more reliable. Also, mis-classificationsa refiltered out through the use of a rough but approximate estimator, the Taylor's tool life equation.In this study an on-line tool wear monitoring system for turning processesh as been developedwhich can reliably estimate the tool wear under common workshop conditions. The system'smodular structurem akesi t easyt o updatea s requiredb y different machinesa nd/or processesT. heuse of Taylor's tool life equation, although weak as a tool life estimator, proved to be crucial inachieving higher performance levels. The application of the Self Organizing Map to tool wearmonitoring is, in itself, new and proved to be slightly more reliable then the Adaptive ResonanceTheory neural network.
机译:本文涉及人工智能在刀具磨损监测中的应用。主要目的是开发一种智能状态监测系统,该系统能够检测切割工具何时磨损。为了实现此目标,建议使用组合的ExpertSystem和神经网络,该系统能够处理来自外部传感器的数据,并将其与知识库中的信息相结合,然后估计工具的磨损状态。这项工作的新颖性主要与通过将传感器基体的形成与推理相结合,可以得到一个可以从经验中学习并可以更新与不同切削条件相关的信息的知识库的在线系统。两个神经网络解决了解释复杂传感器输入的问题,而专家系统更可靠地跟踪了两个神经网络的先前成功,刺激情况。同样,通过使用粗略但近似的估计量泰勒工具寿命方程式,可以消除错误分类。在本研究中,开发了一种用于车削过程的在线工具磨损监测系统,该系统可以可靠地估算常见车间条件下的工具磨损。该系统的模块化结构可以通过不同的机器和/或过程来轻松更新。泰勒工具寿命方程的使用,尽管作为工具寿命估计值较弱,但对于提高性能水平至关重要。自组织映射在刀具磨损监测中的应用本身是新的,并且比自适应共振理论神经网络更可靠。

著录项

  • 作者

    Silva R. G.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号