首页> 外文OA文献 >Workload-aware table splitting for NoSQL
【2h】

Workload-aware table splitting for NoSQL

机译:NoSQL的工作负载感知表拆分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Massive scale data stores, which exhibit highly desirable scalability and availability properties are becoming pivotal systems in nowadays infrastructures. Scalability achieved by these data stores is anchored on data independence; there is no clear relationship between data, and atomic inter-node operations are not a concern. Such assumption over data allows aggressive data partitioning. In particular, data tables are horizontally partitioned and spread across nodes for load balancing. However, in current versions of these data stores, partitioning is either a manual process or automated but simply based on table size. We argue that size based partitioning does not lead to acceptable load balancing as it ignores data access patterns, namely data hotspots. Moreover, manual data partitioning is cumbersome and typically infeasible in large scale scenarios. In this paper we propose an automated table splitting mechanism that takes into account the system workload. We evaluate such mechanism showing that it simple, non-intrusive and effective.
机译:展现高度可伸缩性和可用性属性的大规模数据存储正在成为当今基础架构中的关键系统。这些数据存储实现的可伸缩性取决于数据的独立性。数据之间没有明确的关系,并且原子间节点操作也不是问题。对数据的这种假设允许进行积极的数据分区。特别是,数据表是水平分区的,并跨节点分布以实现负载平衡。但是,在这些数据存储的当前版本中,分区是手动过程或自动过程,但仅基于表大小即可。我们认为基于大小的分区不会导致可接受的负载平衡,因为它忽略了数据访问模式(即数据热点)。此外,手动数据分区很麻烦,并且在大规模方案中通常是不可行的。在本文中,我们提出了一种自动表拆分机制,该机制考虑了系统工作负载。我们评估这种机制表明它简单,非侵入性和有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号