首页> 外文OA文献 >Data mining models to predict patient's readmission in intensive care units
【2h】

Data mining models to predict patient's readmission in intensive care units

机译:数据挖掘模型可预测重症监护病房的患者再入院率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Decision making is one of the most critical activities in Intensive Care Units (ICU). Moreover, it isextremely difficult for health professionals to interpret in real time all the available data. In order to improvethe decision process, classification models have been developed to predict patient’s readmission in ICU.Knowing the probability of readmission in advance will allow for a more efficient planning of discharge.Consequently, the use of these models results in a lower rates of readmission and a cost reduction, usuallyassociated with premature discharges and unplanned readmissions. In this work was followed a numericalindex, called Stability and Workload Index for Transfer (SWIFT). The data used to induce the classificationmodels are from ICU of Centro Hospitalar do Porto, Portugal. The results obtained so far, in terms ofaccuracy, were very satisfactory (98.91%). Those results were achieved through the use of Naïve Bayestechnique. The models will allow health professionals to have a better perception on patient’s futurecondition in the moment of the hospital discharge. Therefore it will be possible to know the probability of apatient being readmitted into the ICU.
机译:决策是重症监护病房(ICU)中最关键的活动之一。此外,对于卫生专业人员而言,实时解释所有可用数据极其困难。为了改善决策过程,已经开发了分类模型来预测患者在ICU中的再入院率,提前知道再入院率可以更有效地制定出院计划,因此使用这些模型会导致更低的再入院率成本降低,通常与过早排放和计划外的重新接纳有关。在这项工作中,遵循了一个数字索引,称为传输的稳定性和工作量索引(SWIFT)。用于推导分类模型的数据来自葡萄牙波尔图中心医院的ICU。到目前为止,在准确性方面获得的结果非常令人满意(98.91%)。这些结果是通过使用朴素贝叶斯技术获得的。这些模型将使医疗保健专业人员在出院时更好地了解患者的未来状况。因此,将有可能知道患者再次被送入ICU的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号