首页> 外文OA文献 >A data mining approach to predict forest fires using meteorological data
【2h】

A data mining approach to predict forest fires using meteorological data

机译:一种使用气象数据预测森林火灾的数据挖掘方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Forest fires are a major environmental issue, creating economical and ecological damage while endangering human lives. Fast detection is a key element for controlling such phenomenon. To achieve this, one alternative is to use automatic tools based on local sensors, such as provided by meteorological stations. In effect, meteorological conditions (e.g. temperature, wind) are known to influence forest fires and several fire indexes, such as the forest Fire Weather Index(FWI), use such data. In this work, we explore a DataMining (DM) approach to predict the burned area of forest fires. Five different DM techniques, e.g. Support Vector Machines (SVM) and Random Forests, and four distinct feature selection setups (using spatial, temporal, FWI components and weather attributes), were tested on recent real-world data collected from the northeast region of Portugal. The best configuration uses a SVM and four meteorological inputs (i.e. temperature, relative humidity, rain and wind) and it is capable of predicting the burned area of small fires, which are more frequent. Such knowledge is particularlyuseful for improving firefighting resource management (e.g. prioritizing targets for air tankers and ground crews).
机译:森林火灾是一个重大的环境问题,在造成经济和生态损害的同时,还危及人类的生命。快速检测是控制这种现象的关键因素。为此,一种替代方法是使用基于本地传感器的自动工具,例如气象站提供的工具。实际上,已知气象条件(例如温度,风)会影响森林大火,一些火灾指数(例如森林火灾天气指数(FWI))使用此类数据。在这项工作中,我们探索了一种DataMining(DM)方法来预测森林大火的燃烧面积。五种不同的DM技术,例如支持向量机(SVM)和随机森林以及四个不同的特征选择设置(使用空间,时间,FWI组件和天气属性)已在从葡萄牙东北部地区收集的最新实际数据中进行了测试。最佳配置使用支持向量机(SVM)和四个气象输入(即温度,相对湿度,雨水和风),并且能够预测更频繁发生的小火的燃烧面积。此类知识对于改善消防资源管理(例如,确定空中加油机和地勤人员的目标的优先级)特别有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号