首页> 外文OA文献 >Preventing premature convergence to local optima in genetic algorithms via random offspring generation
【2h】

Preventing premature convergence to local optima in genetic algorithms via random offspring generation

机译:通过随机后代生成防止遗传算法过早收敛到局部最优

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Genetic Algorithms (GAs) paradigm is being used increasingly in search and optimization problems.The method has shown to be efficient and robust in a considerable number of scientific domains, where the complexity and cardinality of the problems considered elected themselves as key factors to be taken into account.However, there are still some insufficiencies; indeed, one of the major problems usually associated with the use of GAs is the premature convergence to solutions coding local optima of the objective function.The problem is tightly related with the loss of genetic diversity of the GA's population, being the cause of a decrease on the quality of the solutions found.Out of question, this fact has lead to the development of different techniques aiming to solve, or at least to minimize the problem;traditional methods usually work to maintain a certain degree of genetic diversity on the target populations, without affecting the convergence process of the GA.In one's work, some of these techniques are compared and an innovative one, the Random Offspring Generation, is presented and evaluated in its merits.The Traveling Salesman Problem is used as a benchmark.
机译:遗传算法(GAs)范式正越来越多地用于搜索和优化问题中,该方法在相当多的科学领域均已证明是有效且稳健的,其中问题的复杂性和基数将自己选为关键因素但是,仍然存在一些不足;的确,通常与遗传算法的使用相关的主要问题之一是过早收敛到编码目标函数局部最优的解,该问题与遗传算法种群遗传多样性的丧失密切相关,是遗传种群减少的原因毫无疑问,这一事实导致了旨在解决或至少将问题最小化的不同技术的发展;传统方法通常可在目标人群上保持一定程度的遗传多样性在不影响GA收敛过程的前提下,对其中的一些技术进行了比较,并提出了一种创新的随机后代技术,并对其优点进行了评估。将旅行商问题作为基准。

著录项

  • 作者

    Rocha Miguel; Neves José;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号