首页> 外文OA文献 >Nonparametric instrumental regression with errors in variables
【2h】

Nonparametric instrumental regression with errors in variables

机译:具有变量误差的非参数工具回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers nonparametric instrumental variable regression when the endogenous variable is contaminated with classical measurement error. Existing methods are inconsistent in the presence of measurement error. We propose a wavelet deconvolution estimator for the structural function that modifies the generalized Fourier coefficients of the orthogonal series estimator to take into account the measurement error. We establish the convergence rates of our estimator for the cases of mildly/severely ill-posed models and ordinary/super smooth measurement errors. We characterize how the presence of measurement error slows down the convergence rates of the estimator. We also study the case where the measurement error density is unknown and needs to be estimated, and show that the estimation error of the measurement error density is negligible under mild conditions as far as the measurement error density is symmetric.
机译:当内生变量被经典测量误差污染时,本文考虑了非参数工具变量回归。在存在测量误差的情况下,现有方法是不一致的。我们提出了一种针对结构函数的小波解卷积估计器,该模型对正交序列估计器的广义傅里叶系数进行了修改,以考虑到测量误差。对于轻度/重度不适模型和普通/超平滑测量误差,我们建立了估计器的收敛速度。我们描述了测量误差的存在如何减慢估计器的收敛速度。我们还研究了测量误差密度未知并且需要估计的情况,并表明,只要测量误差密度是对称的,在温和条件下,测量误差密度的估计误差就可以忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号