首页> 外文OA文献 >Real-time financial surveillance via quickest change-point detection methods
【2h】

Real-time financial surveillance via quickest change-point detection methods

机译:通过最快的变更点检测方法进行实时财务监控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of efficient financial surveillance aimed at “on-the-go” detection of structural breaks (anomalies) in “live”-monitored financial time series. With the problem approached statistically, viz. as that of multicyclic sequential (quickest) change-point detection, we propose a semi-parametric multi-cyclic change-point detection procedure to promptly spot anomalies as they occur in the time series under surveillance. The proposed procedure is a derivative of the likelihood ratio-based Shiryaev–Roberts (SR) procedure; the latter is a quasi-Bayesian surveillance method known to deliver the fastest (in the multi-cyclic sense) speed of detection, whatever be the false alarm frequency. We offer a case study where we first carry out, step by step, a preliminary statistical analysis of a set of real-world financial data, and then set up and devise (a) the proposed SR-based anomaly-detection procedure and (b) the celebrated Cumulative Sum (CUSUM) chart to detect structural breaks in the data. While both procedures performed well, the proposed SR-derivative, conforming to the intuition, seemed slightly better.
机译:我们考虑有效的财务监控问题,旨在“实时”检测“实时”监控的财务时间序列中的结构性断裂(异常)。随着统计问题的解决,即。与多周期顺序(最快速)变化点检测一样,我们提出了一种半参数多周期变化点检测程序,以在监视的时间序列中迅速发现异常。拟议的程序是基于似然比的Shiryaev-Roberts(SR)程序的衍生。后者是一种准贝叶斯监视方法,已知能够提供最快(在多周期意义上)的检测速度,无论错误警报频率是多少。我们提供了一个案例研究,其中我们首先逐步地对一组现实世界的财务数据进行初步的统计分析,然后建立并设计(a)建议的基于SR的异常检测程序和(b) ),使用著名的“累积总和”(CUSUM)图表来检测数据中的结构性断裂。尽管两种方法均表现良好,但符合直觉的拟议SR衍生物似乎稍好一些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号