首页> 外文OA文献 >Using Stock-Specific Thermal Physiology to Simulate In-River Mortality of Fraser River Sockeye Salmon.
【2h】

Using Stock-Specific Thermal Physiology to Simulate In-River Mortality of Fraser River Sockeye Salmon.

机译:使用股票特定的热生理学来模拟弗雷泽河红鲑鱼的河内死亡率。

摘要

Annual estimates of mortality en-route to spawning grounds for certain populations of Fraser River Sockeye salmon (Oncorhynchus nerka) can routinely exceed 50% posing challenges for harvest management and salmon conservation. High estimates of mortality are also correlated with high migration temperatures, suggesting temperature is one of the main factors. However, these estimates of apparent mortality are uncertain as they currently rely on discrepancies between up-river spawning ground estimates and lower river escapement estimates adjusting for estimates of in-river catch. Therefore, applying thermal physiology may serve as a tool to explain the potential contribution temperature-related mortality could have in calculating annual apparent mortality estimates for specific populations. I incorporated short- and long-term mortality functions based on population-specific aerobic scope temperature thresholds and an aggregate accumulation of degree-days threshold to a simulation model to estimate en-route mortality associated with temperature exposure for six Fraser River Sockeye salmon populations: Early Stuart, Gates Creek, Stellako, Chilko, and Weaver Creek. I compared simulated temperature based mortality rates to apparent mortality estimates (i.e. difference between estimates) and tested model sensitivity to uncertainty in short- and long-term LD50, arrival timing, and movement rate parameters. Results show that high temperature is likely a key driver of large en-route loss as both simulated mortality and apparent mortality estimates were higher in warmer years and lower in cooler years. I attribute the simulated mortality rates being generally lower than apparent mortality to the role that other sources of mortality can play (e.g. source error, high discharge). Simulated mortality rates were most sensitive to the short-term LD50 parameter, followed by the long-term LD50 and arrival timing parameters. However, simulated mortality rates were not sensitive to changes in movement rates. The model can explain temperature-related population-specific differences in apparent mortality between co-migrating populations (e.g., up to 80% absolute differences between Chilko and co-migrating populations) and provides evidence that these differences are driven by differences in aerobic scope. My results could inform managers of the relative importance of key parameters (short- and long-term mortality, and arrival timing) when estimating population-specific temperature-related mortality.
机译:对于某些弗雷泽河红鲑(Oncorhynchus nerka)某些种群到产卵场的途中死亡率的年度估计通常会超过50%,这给收获管理和鲑鱼保护提出了挑战。高死亡率估计也与高迁移温度相关,这表明温度是主要因素之一。但是,这些表观死亡率的估计值尚不确定,因为它们目前依赖于上游产卵场估计值与下游河道逃逸估计值之间的差异,这些估计值已根据河流捕获量进行了调整。因此,应用热生理学可以作为一种工具,解释与温度相关的死亡率在计算特定人群的年度表观死亡率估计值方面的潜在贡献。我将基于特定人群的需氧范围温度阈值和度日阈值的累积积累的短期和长期死亡率函数纳入模拟模型,以估算六个弗雷泽河红鲑鲑鱼种群与温度暴露相关的途中死亡率:早期的斯图尔特,盖茨溪,斯特拉科,奇尔科和韦弗溪。我将模拟的基于温度的死亡率与明显的死亡率估算值(即估算值之间的差异)进行了比较,并测试了模型对短期和长期LD50,到达时间和运动速率参数不确定性的敏感性。结果表明,高温可能是途中大量损失的关键驱动因素,因为模拟的死亡率和明显的死亡率估算值在较暖的年份较高,在较冷的年份较低。我将模拟死亡率普遍低于表观死亡率归因于其他死亡率来源可以​​发挥的作用(例如来源误差,高出院率)。模拟死亡率对短期LD50参数最敏感,其次是长期LD50和到达时间参数。但是,模拟死亡率对运动速度的变化不敏感。该模型可以解释与温度有关的特定人群在同居人群之间的表观死亡率差异(例如,奇尔科和同居人群之间的绝对差异高达80%),并提供证据表明这些差异是由有氧范围的差异所驱动的。我的结果可以告诉管理人员在估计特定人群的温度相关死亡率时,关键参数(短期和长期死亡率以及到达时间)的相对重要性。

著录项

  • 作者

    Carter Jennifer Karen;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号