首页> 外文OA文献 >Compressive sensing based multiview image coding with belief propagation
【2h】

Compressive sensing based multiview image coding with belief propagation

机译:基于压缩感知和信念传播的多视点图像编码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiview imaging technologies consist of multiple cameras which are usually highly related. In some network settings, it is possible to reduce the operational quality of some cameras yet still achieve high-quality image recovery. Employing low-resolution cameras can greatly decrease the acquisition costs and complexities. The idea of Compressive Sensing (CS) is introduced to accomplish the role of low-quality cameras by operating at a diminished sampling rate. CS imposes a prior distribution on the unknown variables, and allows sparse signal recovery from sub-Nyquist measurements. In this thesis, we investigate the applications of Compressive Sensing via Belief Propagation (CS-BP) theory for low-quality cameras. In more detail, we take advantage of the side information from neighboring views, in improving the performance of BP-based multiview image recovery. The main issue in the original CS-BP is that all unknown variables have the same prior distribution, which is not true in many cases, especially in transformed data. In this thesis, we investigate the applications of multiview technology along with methods on the generalization of the CS-BP. To further improve the CS-BP, we explore the role of larger coefficients of the signal in assigning the pdf sampling step-size. As large coefficients are dominant in step-size determination, the greater the large components are, the less accurate the small components detection is. Thus, we propose methods which deal with DC and other large coefficients to attenuate their influence on the sampling step-size. The proposed method greatly improves the accuracy of signal recovery, as the sampling step-size is maintained at a reasonably small value. In addition, we evaluate the number of large coefficients that are to be eliminated from BP iterations, by introducing an adaptive technique which determines the optimum number of coefficients according to the involving costs and complexities. Application of compressive sensing in multiview technology is relatively a new idea and the experimental results show that the generalized CS-BP can greatly outperform the original CS-BP technique.
机译:多视图成像技术由通常高度相关的多个摄像机组成。在某些网络设置中,可能会降低某些相机的操作质量,但仍能实现高质量的图像恢复。使用低分辨率相机可以大大降低采集成本和复杂性。引入压缩感测(CS)的想法是通过降低采样率来实现低质量相机的作用。 CS对未知变量施加先验分布,并允许从次奈奎斯特测量中恢复稀疏信号。在本文中,我们研究了基于信念传播(CS-BP)理论的压缩感知在低质量相机中的应用。更详细地讲,我们利用来自相邻视图的辅助信息来提高基于BP的多视图图像恢复的性能。原始CS-BP中的主要问题是所有未知变量都具有相同的先验分布,在许多情况下,尤其是在转换后的数据中,情况并非如此。本文研究了多视图技术在CS-BP泛化中的应用。为了进一步改善CS-BP,我们探索了更大的信号系数在分配pdf采样步长中的作用。由于大系数在步长确定中占主导地位,因此大成分越大,小成分检测的准确性就越差。因此,我们提出了处理DC和其他大系数的方法,以减弱它们对采样步长的影响。所提出的方法大大提高了信号恢复的准确性,因为采样步长保持在合理的较小值。此外,我们通过引入一种自适应技术来评估要从BP迭代中消除的大系数的数量,该技术根据涉​​及的成本和复杂性确定最佳系数的数量。压缩感知在多视图技术中的应用是一个相对较新的思想,实验结果表明,广义的CS-BP可以大大优于原始的CS-BP技术。

著录项

  • 作者

    Beigi Parmida;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号