首页> 外文OA文献 >Fuel Cell Diagnostics using Electrochemical Impedance Spectroscopy
【2h】

Fuel Cell Diagnostics using Electrochemical Impedance Spectroscopy

机译:使用电化学阻抗谱的燃料电池诊断

摘要

When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault. This fault, driven by neighboring cells, can lead to anode catalyst degradation and, through cell reversal, to holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and it recombines directly with air. This recombination results in a reduction in oxygen concentration on the cathode side of the MEA and a fuel cell voltage reduction. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). In this research, in order to fully understand the effect of this oxygen reduction fault, the impedances of single and multi-cell stacks at different leak rates were measured. Then the impedance signatures were compared with the signatures of stacks having non-leaky cells at different oxygen concentrations with the same current densities. The signatures were analyzed by fitting the leaky stacks and oxygen concentrations impedance data sets with the parameters of a Randles circuit. The correlation between the parameters of the two data sets allows us to understand the change in impedance signatures with respect to a reduction of oxygen in the cathode side. Using the circuit parameters, a model that establishes a relationship between impedance and voltage was also considered. With the help of this model along with the impedance signatures, we are able to detect the reduction of oxygen concentrations at the cathode by using fuzzy logic (FL). However, resolution of detection was reduced with the reduction of leak rate and/or increases in the stack cell-count. The amount of hydrogen leak rates were quantified by simulating the resulting reduced amount of oxygen with the use of neural network (NN) method. Successful implementation of FL and NN methods in a fuel cell system can result in an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation. Using such system will increase the reliability and performance of fuel cell stacks, where leaks can be detected online and appropriate mitigation criteria can be applied.
机译:当质子交换膜(PEM)燃料电池的氢气不足时,它将遭受反向电势故障的困扰。由相邻电池驱动的此故障可能导致阳极催化剂降解,并通过电池反转而由于局部生热而导致膜中的孔。结果,氢通过电短路的膜电极组件(MEA)泄漏而没有反应,并且它直接与空气重新结合。该复合导致MEA的阴极侧上的氧浓度降低和燃料电池电压降低。可以通过使用电化学阻抗谱(EIS)检测这种电压降低。在这项研究中,为了充分了解这种氧气还原故障的影响,测量了不同泄漏率下的单电池和多电池堆的阻抗。然后,将阻抗特征与具有相同电流密度的不同氧气浓度下具有非泄漏电池的电池堆的特征进行比较。通过将泄漏的烟囱和氧气浓度阻抗数据集与Randles电路的参数进行拟合来分析签名。这两个数据集的参数之间的相关性使我们能够了解相对于阴极侧氧气还原的阻抗特征变化。使用电路参数,还考虑了建立阻抗和电压之间关系的模型。借助该模型以及阻抗签名,我们能够使用模糊逻辑(FL)检测阴极处氧气浓度的降低。然而,检测的分辨率随着泄漏率的降低和/或堆叠电池数量的增加而降低。通过使用神经网络(NN)方法模拟最终减少的氧气量,可以量化氢气泄漏率的数量。在燃料电池系统中成功实施FL和NN方法可产生车载诊断系统,该系统可用于检测并可能防止电池反转故障,并允许了解交叉或转移泄漏的状态与运行时间的关系。使用这样的系统将提高燃料电池堆的可靠性和性能,其中可以在线检测泄漏并可以应用适当的缓解标准。

著录项

  • 作者

    Mousa Ghassan Hassan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号