首页> 外文OA文献 >Weightless Neural System Employing Simple Sensor Data for Efficient Real-Time Round-Corner, Junction and Doorway Detection for Autonomous System Path Planning in Smart Robotic Assisted Healthcare Wheelchairs
【2h】

Weightless Neural System Employing Simple Sensor Data for Efficient Real-Time Round-Corner, Junction and Doorway Detection for Autonomous System Path Planning in Smart Robotic Assisted Healthcare Wheelchairs

机译:利用简单传感器数据的失重神经系统,用于智能机器人辅助医疗轮椅的高效实时圆角,路口和门口检测,实现自主系统路径规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human assistive devices need to be effective with real-time assistance in real world situations: powered wheelchair users require reassuring robust support, especially in the area of collision avoidance. However, it is important that the intelligent system does not take away control from the user. The patient must be allowed to provide the intelligence in the system and the assistive technology must be engineered to be sufficiently smart to recognize and accommodate this. Robotic assistance employed in the healthcare arena must therefore emphasize positive support rather than adopting an intrusive role. Weightless Neural Networks are an excellent pattern recognition tool for real-time applications. This paper introduces a technique for look-ahead identification of open doorways and junctions. Simple sensor data in real-time is used to detect open doors with inherent data uncertainties using a technique applied to a Weightless Neural Network Architecture.
机译:在现实世界中,人类辅助设备必须在实时帮助下有效:电动轮椅使用者需要确保可靠的支撑,尤其是在避免碰撞方面。但是,重要的是,智能系统不能脱离用户的控制。必须允许患者在系统中提供智能,并且辅助技术必须经过精心设计,以足够智能地识别和适应这一需求。因此,医疗保健领域中使用的机器人辅助必须强调积极的支持,而不是扮演侵入性角色。失重神经网络是用于实时应用的出色模式识别工具。本文介绍了一种用于预先确定开放的门口和路口的技术。使用应用于失重神经网络架构的技术,实时的简单传感器数据可用于检测具有固有数据不确定性的开门。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号